login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) read by rows: coefficients in the recurrence of sequences which equal their n-th differences.
13

%I #24 Apr 10 2023 14:05:52

%S 2,2,0,3,-3,2,4,-6,4,0,5,-10,10,-5,2,6,-15,20,-15,6,0,7,-21,35,-35,21,

%T -7,2,8,-28,56,-70,56,-28,8,0,9,-36,84,-126,126,-84,36,-9,2,10,-45,

%U 120,-210,252,-210,120,-45,10,0,11,-55,165,-330,462,-462,330,-165,55,-11,2

%N Triangle T(n,k) read by rows: coefficients in the recurrence of sequences which equal their n-th differences.

%C Sequences which equal their p-th differences obey recurrences a(n) = Sum_{s=1..p} T(p,s)*a(n-s).

%C This defines T(p,s) as essentially a signed version of a chopped Pascal triangle A014410, see A130785.

%C For cases like p=2, 4, 6, 8, 10, 12, 14, the denominator of the rational generating function of a(n) contains a factor 1-x; depending on the first terms in the sequences a(n), additional, simpler recurrences may exist if this cancels with a factor in the numerator. - _R. J. Mathar_, Jun 10 2008

%H Alois P. Heinz, <a href="/A135356/b135356.txt">Rows n = 1..141, flattened</a>

%F T(n,k) = (-1)^(k+1)*A007318(n, k). T(n,n) = 1 - (-1)^n.

%F Sum_{k=1..n} T(n, k) = 2.

%F From _G. C. Greubel_, Apr 09 2023: (Start)

%F Sum_{k=1..n} (-1)^(k-1)*T(n, k) = 2*A051049(n-1).

%F Sum_{k=1..n-1} T(n, k) = (1 + (-1)^n).

%F Sum_{k=1..n-1} (-1)^(k-1)*T(n, k) = A000225(n-1).

%F T(2*n, n) = (-1)^(n-1)*A000984(n), n >= 1. (End)

%e Triangle begins with row n=1:

%e 2;

%e 2, 0;

%e 3, -3, 2;

%e 4, -6, 4, 0;

%e 5, -10, 10, -5, 2;

%e 6, -15, 20, -15, 6, 0;

%e 7, -21, 35, -35, 21, -7, 2;

%e 8, -28, 56, -70, 56, -28, 8, 0;

%e 9, -36, 84, -126, 126, -84, 36, -9, 2;

%p T:= (p, s)-> `if`(p=s, 2*irem(p, 2), (-1)^(s+1) *binomial(p, s)):

%p seq(seq(T(p, s), s=1..p), p=1..11); # _Alois P. Heinz_, Aug 26 2011

%t T[p_, s_]:= If[p==s, 2*Mod[s, 2], (-1)^(s+1)*Binomial[p, s]];

%t Table[T[p, s], {p, 12}, {s, p}]//Flatten (* _Jean-François Alcover_, Feb 19 2015, after _Alois P. Heinz_ *)

%o (Magma)

%o A135356:= func< n,k | k eq n select 1-(-1)^n else (-1)^(k+1)*Binomial(n,k) >;

%o [A135356(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Apr 09 2023

%o (SageMath)

%o def A135356(n,k):

%o if (k==n): return 2*(n%2)

%o else: return (-1)^(k+1)*binomial(n,k)

%o flatten([[A135356(n,k) for k in range(1,n+1)] for n in range(1,13)]) # _G. C. Greubel_, Apr 09 2023

%Y Related sequences: A000079 (n=1), A131577 (n=2), (A131708 , A130785, A131562, A057079) (n=3), (A000749, A038503, A009545, A038505) (n=4), A133476 (n=5), A140343 (n=6), A140342 (n=7).

%Y Cf. A000225, A000984, A051049, A130785.

%K sign,tabl

%O 1,1

%A _Paul Curtz_, Dec 08 2007, Mar 25 2008, Apr 28 2008

%E Edited by _R. J. Mathar_, Jun 10 2008