login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217922
Triangle read by rows: labeled trees counted by improper edges.
0
1, 1, 2, 1, 6, 7, 3, 24, 46, 40, 15, 120, 326, 430, 315, 105, 720, 2556, 4536, 4900, 3150, 945, 5040, 22212, 49644, 70588, 66150, 38115, 10395, 40320, 212976, 574848, 1011500, 1235080, 1032570, 540540, 135135
OFFSET
1,3
COMMENTS
T(n,k) is the number of labeled trees on [n], rooted at 1, with k improper edges, for n >= 1, k >= 0. See Zeng link for definition of improper edge.
LINKS
J. Fernando Barbero G., Jesús Salas, Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013-2014.
Dominique Dumont, Armand Ramamonjisoa, Grammaire de Ramanujan et Arbres de Cayley, Electr. J. Combinatorics, Volume 3, Issue 2 (1996) R17 (see page 17).
M. Josuat-Vergès, Derivatives of the tree function, arXiv preprint arXiv:1310.7531 [math.CO], 2013.
Lucas Randazzo, Arboretum for a generalization of Ramanujan polynomials, arXiv:1905.02083 [math.CO], 2019.
Jiang Zeng, A Ramanujan sequence that refines the Cayley formula for trees, Ramanujan Journal 3 (1999) 1, 45-54, [DOI]
EXAMPLE
Table begins
\ k 0....1....2....3 ...
n
1 |..1
2 |..1
3 |..2....1
4 |..6....7....3
5 |.24...46...40....15
6 |120..326..430...315...105
T(4,2) = 3 because we have 1->3->4->2, 1->4->2->3, 1->4->3->2, in each of which the last 2 edges are improper.
MATHEMATICA
T[n_, 0]:= (n-1)!; T[n_, k_]:= If[k<0 || k>n-2, 0, (n-1)T[n-1, k] +(n+k-3)T[n-1, k-1]];
Join[{1}, Table[T[n, k], {n, 12}, {k, 0, n-2}]//Flatten] (* modified by G. C. Greubel, May 07 2019 *)
PROG
(Sage)
def T(n, k):
if k==0: return factorial(n-1)
elif (k<0 or k > n-2): return 0
else: return (n-1)*T(n-1, k) + (n+k-3)* T(n-1, k-1)
[1] + [[T(n, k) for k in (0..n-2)] for n in (2..12)] # G. C. Greubel, May 07 2019
CROSSREFS
Cf. A054589, A075856. Row sums are n^(n-2), A000272.
Sequence in context: A192329 A059364 A258870 * A196554 A244647 A324037
KEYWORD
nonn,tabf
AUTHOR
David Callan, Oct 14 2012
STATUS
approved