login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: labeled trees counted by improper edges.
0

%I #28 May 07 2019 10:59:34

%S 1,1,2,1,6,7,3,24,46,40,15,120,326,430,315,105,720,2556,4536,4900,

%T 3150,945,5040,22212,49644,70588,66150,38115,10395,40320,212976,

%U 574848,1011500,1235080,1032570,540540,135135

%N Triangle read by rows: labeled trees counted by improper edges.

%C T(n,k) is the number of labeled trees on [n], rooted at 1, with k improper edges, for n >= 1, k >= 0. See Zeng link for definition of improper edge.

%H J. Fernando Barbero G., Jesús Salas, Eduardo J. S. Villaseñor, <a href="http://arxiv.org/abs/1307.2010">Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure</a>, arXiv:1307.2010 [math.CO], 2013-2014.

%H Dominique Dumont, Armand Ramamonjisoa, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v3i2r17">Grammaire de Ramanujan et Arbres de Cayley</a>, Electr. J. Combinatorics, Volume 3, Issue 2 (1996) R17 (see page 17).

%H M. Josuat-Vergès, <a href="http://arxiv.org/abs/1310.7531">Derivatives of the tree function</a>, arXiv preprint arXiv:1310.7531 [math.CO], 2013.

%H Lucas Randazzo, <a href="https://arxiv.org/abs/1905.02083">Arboretum for a generalization of Ramanujan polynomials</a>, arXiv:1905.02083 [math.CO], 2019.

%H Jiang Zeng, <a href="http://math.univ-lyon1.fr/homes-www/zeng/public_html/paper/publication.html">A Ramanujan sequence that refines the Cayley formula for trees</a>, Ramanujan Journal 3 (1999) 1, 45-54, <a href="http://dx.doi.org/10.1023/A:1009809224933">[DOI]</a>

%e Table begins

%e \ k 0....1....2....3 ...

%e n

%e 1 |..1

%e 2 |..1

%e 3 |..2....1

%e 4 |..6....7....3

%e 5 |.24...46...40....15

%e 6 |120..326..430...315...105

%e T(4,2) = 3 because we have 1->3->4->2, 1->4->2->3, 1->4->3->2, in each of which the last 2 edges are improper.

%t T[n_,0]:= (n-1)!;T[n_, k_]:= If[k<0 || k>n-2, 0, (n-1)T[n-1, k] +(n+k-3)T[n-1, k-1]];

%t Join[{1}, Table[T[n,k], {n, 12}, {k, 0, n-2}]//Flatten] (* modified by _G. C. Greubel_, May 07 2019 *)

%o (Sage)

%o def T(n, k):

%o if k==0: return factorial(n-1)

%o elif (k<0 or k > n-2): return 0

%o else: return (n-1)*T(n-1, k) + (n+k-3)* T(n-1, k-1)

%o [1] + [[T(n, k) for k in (0..n-2)] for n in (2..12)] # _G. C. Greubel_, May 07 2019

%Y Cf. A054589, A075856. Row sums are n^(n-2), A000272.

%K nonn,tabf

%O 1,3

%A _David Callan_, Oct 14 2012