login
A244647
Decimal expansion of the sum of the reciprocals of the decagonal numbers (A001107).
7
1, 2, 1, 6, 7, 4, 5, 9, 5, 6, 1, 5, 8, 2, 4, 4, 1, 8, 2, 4, 9, 4, 3, 3, 9, 3, 5, 2, 0, 0, 4, 7, 6, 0, 3, 8, 2, 1, 0, 8, 3, 6, 1, 7, 0, 0, 9, 2, 2, 7, 7, 2, 8, 9, 0, 9, 4, 9, 8, 3, 7, 4, 4, 1, 5, 4, 4, 6, 9, 6, 3, 5, 6, 3, 5, 0, 7, 2, 9, 5, 4, 8, 7, 1, 0, 5, 3, 5, 7, 9, 7, 8, 8, 6, 7, 7, 1, 5, 3, 2, 2, 0, 5, 6, 9
OFFSET
1,2
COMMENTS
For the partial sums of the reciprocals of the (positive) decagonal numbers see A250551(n+1)/A294515(n), n >= 0. - Wolfdieter Lang, Nov 07 2017
FORMULA
Sum_{n>0} 1/(4n^2 - 3n) = log(2) + Pi/6, (A002162 + A019673).
EXAMPLE
1.216745956158244182494339352004760382108361700922772890949837441544696356350....
MATHEMATICA
RealDigits[ Log[2] + Pi/6, 10, 111][[1]] (* or *)
RealDigits[ Sum[1/(4n^2 - 3n), {n, 1 , Infinity}], 10, 111][[1]]
PROG
(PARI) log(2)+Pi/6 \\ Charles R Greathouse IV, Feb 08 2023
KEYWORD
nonn,cons,easy
AUTHOR
Robert G. Wilson v, Jul 03 2014
STATUS
approved