login
A244646
Decimal expansion of the sum of the reciprocals of the 9-gonal (or enneagonal or nonagonal) numbers (A001106).
7
1, 2, 4, 3, 3, 2, 0, 9, 2, 6, 1, 5, 3, 7, 1, 2, 9, 8, 9, 2, 0, 6, 6, 0, 7, 7, 3, 9, 6, 3, 1, 0, 1, 4, 2, 8, 2, 1, 3, 5, 8, 4, 4, 1, 0, 1, 0, 3, 0, 0, 9, 9, 6, 2, 4, 4, 1, 5, 2, 8, 1, 7, 5, 2, 5, 3, 8, 6, 6, 0, 7, 4, 3, 8, 4, 4, 0, 8, 5, 1, 9, 7, 8, 6, 9, 0, 0, 1, 3, 2, 3, 2, 5, 8, 8, 3, 2, 8, 6, 0, 0, 7, 3, 6, 8
OFFSET
1,2
LINKS
Ravi P. Agarwal, Pythagoreans Figurative Numbers: The Beginning of Number Theory and Summation of Series, Journal of Applied Mathematics and Physics, Vol.9, No.8 (2021), pp. 2038-2113. See p. 2076.
Wikipedia, Polygonal number.
FORMULA
Equals Sum_{n>=1} 2/(7n^2 - 5n).
Equals (2*log(14) + 4*(cos(Pi/7)*log(cos(3*Pi/14)) + log(sin(Pi/7))*sin(Pi/14) - log(cos(Pi/14)) * sin(3*Pi/14)) + Pi*tan(3*Pi/14))/5. - Vaclav Kotesovec, Jul 04 2014
Equals 14/25 - (2/5)*(gamma + psi(-5/7)), where gamma is Euler's constant (A001620) and psi(x) is the digamma function (Agarwal, 2021), psi(-5/7) = psi(2/7)+7/5 = -2.285517..., see A354628. - Amiram Eldar, Nov 12 2021
EXAMPLE
1.2433209261537129892066077396310142821358441010300996244152817525...
MATHEMATICA
RealDigits[ Sum[2/(7n^2 - 5n), {n, 1 , Infinity}], 10, 111][[1]]
KEYWORD
nonn,cons,easy
AUTHOR
Robert G. Wilson v, Jul 03 2014
STATUS
approved