login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160348
Minimal recursive sequence such that if a(n) > 0 then always a(n) > a((f(2n+1)-1)/2), where f is defined by f(2n+1) = (3n+2)/A006519(3n+2) for n>=1, that is f(m) = A075677(2*m-1) for odd m.
2
0, 2, 1, 6, 7, 5, 3, 11, 4, 13, 14, 10, 15, 52, 12, 50, 53, 9, 54, 59, 51, 62, 63, 49, 60, 65, 8, 68, 69, 58, 16, 75, 61, 56, 76, 48, 77, 80, 64, 84, 85, 67, 78, 88, 57, 44
OFFSET
0,2
COMMENTS
If the (3x+1)-Collatz conjecture is true, then this sequence is a permutation of the nonnegative integers.
EXAMPLE
a(0)=0. Let m=3. Then f(m)=5, f^2(m)=1. The corresponding numbers n=(m-1)/2 are 1,2,0. By the condition, a(1) > a(2) > a(0)=0. Therefore let a(2)=1, a(1)=2. Furthermore, consider m=7. Then f(m)=11, f^2(m)=17, f^3(m)=13, f^4(m)=5. The corresponding numbers n=(m-1)/2 are 3,5,8,6,2 and, by the condition, a(3) > a(5) > a(8) > a(6) > a(2)=1. Therefore set a(6)=3 (the minimal value which yet did not appear), a(8)=4, a(5)=5, a(3)=6, etc.
KEYWORD
nonn,more
AUTHOR
Vladimir Shevelev, May 10 2009; corrected May 13 2009, May 19 2009
EXTENSIONS
Name edited by Michel Marcus, Feb 01 2021
STATUS
approved