login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160350
Indices n=pqr of flat cyclotomic polynomials, where p<q<r are primes.
5
30, 42, 66, 70, 78, 102, 110, 114, 130, 138, 154, 170, 174, 182, 186, 190, 222, 230, 231, 238, 246, 258, 266, 282, 286, 290, 310, 318, 322, 354, 366, 370, 374, 399, 402, 406, 410, 418, 426, 430, 434, 435, 438, 442, 465, 470, 474, 483, 494, 498, 506, 518, 530
OFFSET
1,1
COMMENTS
A polynomial is called flat iff it is of height 1, where the height is the largest absolute value of the coefficients.
A cyclotomic polynomial phi(n) is said of order 3 iff n=pqr with distinct (usually odd) primes p,q,r.
It is well known that phi(n) is flat if n has less than 3 odd prime factors, so this sequence includes all numbers of the form 2pq, with primes q>p>2, i.e. A075819. Sequence A117223 lists the complement, i.e. odd terms in this sequence, which start with 231 = 3*7*11.
Moreover, Kaplan shows that the present sequence also includes pqr if r = +-1 (mod pq). Sequence A160352 lists the subsequence of all such numbers, while A160354 lists elements which are not of this form.
LINKS
Nathan Kaplan, Flat cyclotomic polynomials of order three, J. Number Theory 127 (2007), 118-126.
EXAMPLE
a(1)=30=2*3*5 is the smallest product of three distinct primes, and Phi[30] = X^8 + X^7 - X^5 - X^4 - X^3 + X + 1 has only coefficients in {0,1,-1}.
a(19)=231=3*7*11 is the smallest odd product of three distinct primes p,q,r such that Phi[pqr] is flat.
PROG
(PARI) for( pqr=1, 999, my(f=factor(pqr)); #f~==3 & vecmax(f[, 2])==1 & vecmax(abs(Vec(polcyclo(pqr))))==1 & print1(pqr", "))
CROSSREFS
Cf. A159908, A159909 (counts (p, q) for given r).
Sequence in context: A350352 A093599 A007304 * A053858 A075819 A306217
KEYWORD
nonn
AUTHOR
M. F. Hasler, May 11 2009, May 14 2009
STATUS
approved