login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306217
Sphenic numbers with a prime nearest neighbor.
1
30, 42, 66, 70, 78, 102, 110, 114, 130, 138, 174, 182, 190, 222, 230, 238, 258, 282, 310, 318, 354, 366, 374, 402, 410, 418, 430, 434, 438, 442, 498, 598, 602, 606, 618, 642, 646, 654, 658, 678, 682, 710, 742, 762, 786, 822, 826, 830, 854, 906, 938, 942, 946, 970, 978
OFFSET
1,1
COMMENTS
Terms are of the form 4k + 2.
LINKS
EXAMPLE
30 is a term because (2*3*5) - 1 = 29 and (2*3*5) + 1 = 31.
42 is a term because (2*3*7) - 1 = 41 and (2*3*7) + 1 = 43.
66 is a term because (2*3*11) + 1 = 67.
70 is a term because (2*5*7) + 1 = 71.
MAPLE
Res:= NULL: count:= 0: last:= 0: p:= 3;
while count < 100 do
p:= nextprime(p);
if p mod 4 = 3 then
if p-1 <> last then
F:= ifactors(p-1)[2];
if nops(F) = 3 and {F[1, 2], F[2, 2], F[3, 2]}={1} then
Res:= Res, p-1;
count:= count+1;
fi fi
else
F:= ifactors(p+1)[2];
last:= p+1;
if nops(F) = 3 and {F[1, 2], F[2, 2], F[3, 2]}={1} then
Res:= Res, p+1;
count:= count+1;
fi
fi
od:
Res; # Robert Israel, Feb 17 2019
MATHEMATICA
Select[Range[2, 10^3, 4], And[AnyTrue[# + {-1, 1}, PrimeQ], SquareFreeQ@ #, PrimeNu@ # == 3] &] (* Michael De Vlieger, Jan 29 2019 *)
PROG
(PARI) lista(nn) = for(n=1, nn, if(bigomega(n)==3 && omega(n)==3 && (isprime(n-1) || isprime(n+1)), print1(n", "))); \\ Michel Marcus, Jan 30 2019
CROSSREFS
Subsequence of A016825.
Sequence in context: A160350 A053858 A075819 * A034683 A328328 A302574
KEYWORD
nonn
AUTHOR
Torlach Rush, Jan 29 2019
EXTENSIONS
Corrected and extended by Michel Marcus, Jan 30 2019
STATUS
approved