OFFSET
1,1
COMMENTS
Prime factors counted with multiplicity. - Harvey P. Dale, May 21 2024
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
a(3)=66 because 66 is even and its prime divisors are 2, 3 and 11, an odd number.
MAPLE
ts_m2_sod := proc(n); if (numtheory[mobius](n)=-1 and isprime(n)='false' and type(n, even)='true') then RETURN(n); fi end: am2sod := [seq(ts_m2_sod(i), i=1..2500)]: am2sod;
MATHEMATICA
Select[Range[2, 602, 2], CompositeQ[#]&&SquareFreeQ[#]&&OddQ[PrimeOmega[#]]&] (* Harvey P. Dale, May 21 2024 *)
PROG
(PARI) is(n, f=factor(n))=n%2==0 && #f[, 2]>2 && vecmax(f[, 2])==1 && (#f[, 2])%2 \\ Charles R Greathouse IV, Aug 29 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Enoch Haga, Mar 28 2000
EXTENSIONS
Name corrected by Charles R Greathouse IV, Aug 29 2017
STATUS
approved