

A159908


Number of pairs (p,q) of primes p <= q <= r=prime(n) such that the cyclotomic polynomial Phi(p*q*r) has no coefficient > 1 in absolute value.


3



1, 3, 6, 9, 13, 15, 19, 23, 27, 30, 34, 35, 43, 40, 45, 47, 54, 57, 58, 64, 69, 69, 71, 79, 79, 84, 86, 87, 97, 96, 94, 107, 106, 109, 120, 111, 120, 123, 124, 133, 135, 134, 144, 143, 143, 154, 154, 154, 163, 161, 167, 175, 174, 175, 179, 183, 187, 191, 193, 199, 197, 202, 203
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The cyclotomic polynomial Phi[pqr] (p,q,r primes) can only have coefficients with absolute value > 1 if p,q,r are distinct odd primes. This sequence also counts the trivial cases where (1): p=2, or (2): p=q, or (3): q=r. The number of these cases is A008486(n1). Sequence A159909 counts only the nontrivial cases.


LINKS

Phil Carmody, David Broadhurst, Maximilian Hasler, Makoto Kamada, Cyclotomic polynomial puzzles, digest of 43 messages in primenumbers Yahoo group, May 9, 2009  May 23, 2013.


FORMULA



PROG

(PARI) A159908(n) = sum( i=1, n, my(pq=prime(n)*prime(i)); sum( j=1, i, vecmax(abs(Vec(polcyclo(prime(j)*pq))))==1 ))


CROSSREFS



KEYWORD

hard,nonn


AUTHOR



EXTENSIONS



STATUS

approved



