login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078559
Numerator of Product_{i=1..n} (p_i + 1)/(p_i - 1) where p_i is the i-th prime.
2
3, 6, 9, 12, 72, 84, 189, 21, 252, 270, 288, 304, 1596, 152, 3648, 49248, 295488, 1526688, 17302464, 622888704, 640191168, 1707176448, 10243058688, 23046882048, 23527025424, 599939148312, 47054050848, 2540918745792
OFFSET
1,1
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, B48.
LINKS
Robert Israel, Table of n, a(n) for n = 1..1701 (b-file corrected by Georg Fischer, Jan 16 2019)
FORMULA
a(n) = A054640(n)/A078558(n).
a(n)/A078560(n) ~ C*log^2(prime(n)), where C = exp(2*gamma)/zeta(2) = 6(e^gamma/pi)^2 = A091724 / A013661. Physics note: (a(n)/A078560(n) - 1)/(a(n)/A078560(n) + 1) = tanh(Sum_{k=1..n} artanh(1/prime(k))) is the relativistic sum of n velocities c/2, c/3, ..., c/prime(n), in units where the speed of light c = 1. - Thomas Ordowski, Nov 06 2024
MAPLE
Q:= 1: p:= 1:
for n from 1 to 100 do
p:= nextprime(p);
Q:= Q * (p+1)/(p-1);
A[n]:= numer(Q);
od:
seq(A[i], i=1..100); # Robert Israel, May 11 2018
MATHEMATICA
Numerator[Table[Product[(Prime[i] + 1)/(Prime[i] - 1), {i, n}], {n, 30}]] (* Alonso del Arte, Aug 23 2011 *)
PROG
(PARI) a(n) = numerator(prod(i=1, n, (prime(i)+1)/(prime(i)-1))); \\ Michel Marcus, May 11 2018
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Labos Elemer, Dec 06 2002
EXTENSIONS
Improved definition from Franklin T. Adams-Watters, Dec 02 2005
STATUS
approved