login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217921
Number of steps to calculate A175872(n).
2
0, 1, 0, 2, 1, 2, 0, 2, 2, 1, 3, 3, 3, 2, 0, 2, 2, 4, 3, 3, 1, 4, 3, 2, 3, 3, 2, 2, 3, 2, 0, 2, 2, 4, 2, 2, 4, 3, 2, 3, 4, 1, 3, 4, 3, 4, 3, 2, 2, 4, 3, 3, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 0, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 4, 5, 3, 4, 2, 2, 3, 4, 3, 3, 3, 1, 4
OFFSET
1,4
COMMENTS
a(A000225(n)) = 0; a(A000975(n)) = 1.
LINKS
EXAMPLE
n=100, 4 steps: [1,1,0,0,1,0,0]->[2,2,1,2]->[2,1,1]->[1,2]->[1,1], therefore a(100)=4, A175872(100)=2;
n=127, no step: [1,1,1,1,1,1,1], therefore a(127)=0, A175872(127)=7;
n=128, 2 steps: [1,0,0,0,0,0,0,0]->[1,7]->[1,1], therefore a(128)=2, A175872(128)=2;
n=129, 2 steps: [1,0,0,0,0,0,0,1]->[1,6,1]->[1,1,1], therefore a(129)=2, A175872(129)=3;
n=130, 4 steps: [1,0,0,0,0,0,1,0]->[1,5,1,1]->[1,1,2]->[2,1]->[1,2], therefore a(130)=4, A175872(130)=2;
n=131, 2 steps: [1,0,0,0,0,0,1,1]->[1,5,2]->[1,1,1], therefore a(131)=2, A175872(100)=3.
PROG
(Haskell)
import Data.List (group, genericLength)
a217921 n = fst $ until (all (== 1) . snd) f (0, a030308_row n) where
f (i, xs) = (i + 1, map genericLength $ group xs)
CROSSREFS
Cf. A030308.
Sequence in context: A118207 A327274 A055378 * A272328 A334956 A335881
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 26 2013
STATUS
approved