OFFSET
0,5
LINKS
Seiichi Manyama, Antidiagonals n = 0..139, flattened
FORMULA
T(0,k) = 1 and T(n,k) = T(n-1,k) + k * Sum_{j=0..n-1} binomial(n-1,j) * T(j,k) for n > 0.
T(n,k) = exp(-k) * Sum_{j>=0} (j + 1)^n * k^j / j!.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 5, 11, 19, 29, 41, 55, ...
1, 15, 47, 103, 189, 311, 475, ...
1, 52, 227, 622, 1357, 2576, 4447, ...
1, 203, 1215, 4117, 10589, 23031, 44683, ...
1, 877, 7107, 29521, 88909, 220341, 478207, ...
MATHEMATICA
T[0, k_] := 1; T[n_, k_] := T[n - 1, k] + k * Sum[T[j, k] * Binomial[n - 1, j], {j, 0, n - 1}]; Table[T[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Jul 03 2020 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jul 03 2020
STATUS
approved