login
A335978
Numbers m of the form abs(k - reverse(k)) for at least one k.
2
0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 180, 189, 198, 270, 279, 297, 360, 369, 396, 450, 459, 495, 540, 549, 594, 630, 639, 693, 720, 729, 792, 810, 819, 891, 900, 909, 990, 999, 1089, 1179, 1188, 1269, 1278, 1359, 1368, 1449, 1458, 1539, 1548, 1629, 1638, 1719, 1728, 1800, 1809, 1818, 1890, 1908, 1980, 1989, 1998, 2079
OFFSET
1,2
COMMENTS
All terms are divisible by 9.
Let f(k) = k - reverse(k). Then f(reverse(k)) = -f(k), since f(reverse(k)) = reverse(k) - reverse(reverse(k)) = reverse(k) - k = - (k - reverse(k)) = -f(k).
Iteration of the function f(k) = k - reverse(k) leads to A072140, A072141, A072142, and A072143.
LINKS
Michael P. Greaney, Remarkable Reversible Numbers, +plus magazine, (September 29, 2015).
CROSSREFS
Dividing by 9 gives A334145.
Sequence in context: A070279 A259729 A016096 * A070793 A052223 A085132
KEYWORD
nonn,base
AUTHOR
Michael Greaney, Jul 03 2020
STATUS
approved