The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A067030 Numbers of the form k + reverse(k) for at least one k. 52
 0, 2, 4, 6, 8, 10, 11, 12, 14, 16, 18, 22, 33, 44, 55, 66, 77, 88, 99, 101, 110, 121, 132, 141, 143, 154, 161, 165, 176, 181, 187, 198, 201, 202, 221, 222, 241, 242, 261, 262, 281, 282, 302, 303, 322, 323, 342, 343, 362, 363, 382, 383, 403, 404, 423, 424, 443 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Avik Roy (avik_3.1416(AT)yahoo.co.in), Feb 02 2009: (Start) Any (k+1)-digit number m can be represented as m = Sum_{i=0..k} (ai*10^i). Reverse(m) = Sum_{i=0..k} (ai*10^(k-i)). m+Reverse(m) = Sum_{i=0..k} (ai*(10^i+10^(k-i))). The last formula can produce all the terms of this sequence; the order of terms is explicitly determined by the order of ai's (repetition of terms might not be avoided). (End) LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 Index entries for sequences related to Reverse and Add! EXAMPLE 0 belongs to the sequence since 0 + 0 = 0; 33 belongs to the sequence since 12 + 21 = 33. MATHEMATICA M = 10^3; digrev[n_] := IntegerDigits[n] // Reverse // FromDigits; Clear[b]; b[_] = 0; For[n = 1, n <= M, n++, t1 = n + digrev[n]; If[t1 <= M, b[t1] = b[t1] + 1]]; A067030 = Join[{0}, Reap[For[n = 1, n <= M, n++, If[b[n] >= 1, Sow[n]]]][[2, 1]]] (* Jean-François Alcover, Oct 01 2016, after N. J. A. Sloane's Maple code in A072040 *) max = 1000; l = ConstantArray[0, max]; Do[s = n + IntegerReverse@n; If[s <= max, l[[s]]++], {n, max}]; Flatten@{0, Position[l, _?(# != 0 &)]} (* Hans Rudolf Widmer, Dec 25 2022 *) PROG (ARIBAS) function Reverse(n: integer): integer; var i: integer; str, rev: string; begin str := itoa(n); rev := ""; for i := 0 to length(str)-1 do rev := concat(str[i], rev); end; return atoi(rev); end Reverse; function A067030(a, b: integer); var k, n: integer; begin for n := a to b do k := 0; while k <= n do if n = k+Reverse(k) then write(n, ", "); break; else inc(k); end; end; end; end A067030; A067030(0, 500) (* revised by Klaus Brockhaus, May 04 2011 *). (Magma) A067030:=function(a, b); S:=[]; for n in [a..b] do k:=0; while k le n do if n eq k+Seqint(Reverse(Intseq(k))) then Append(~S, n); break; else k+:=1; end if; end while; end for; return S; end function; A067030(0, 500); // Klaus Brockhaus, May 04 2011 (Python) def aupto(lim): return sorted(set(t for t in (k + int(str(k)[::-1]) for k in range(lim+1)) if t <= lim)) print(aupto(443)) # Michael S. Branicky, Dec 25 2022 CROSSREFS Cf. A033865, A067031, A067032, A067033, A067034, A056964. Sequence in context: A225793 A154809 A153170 * A072427 A337430 A050420 Adjacent sequences: A067027 A067028 A067029 * A067031 A067032 A067033 KEYWORD base,easy,nonn AUTHOR Klaus Brockhaus, Dec 29 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 13:09 EST 2023. Contains 367679 sequences. (Running on oeis4.)