OFFSET
1,2
COMMENTS
Numbers n such that [A002110(n)/2]+2 is prime.
These primes are products of consecutive odd primes plus 2: 2+[3.5.7.....p(n)] if n is here.
a(19)-a(22) are Fermat and Lucas PRPs. (prime(2782)# + 4)/2 has 10865 digits. PFGW Version 1.2.0 for Windows [FFT v23.8] Primality testing (p(2782)#+4)/2 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 5 Running N+1 test using discriminant 13, base 1+sqrt(13) (p(2782)#+4)/2 is Fermat and Lucas PRP! - Jason Earls, Dec 12 2006
a(28) > 25000. - Robert Price, Sep 29 2017
MATHEMATICA
p = 1; Do[p = p*Prime[n]; If[PrimeQ[(p + 4)/2], Print[n]], {n, 1, 400} ]
Flatten[Position[FoldList[Times, Prime[Range[3000]]], _?(PrimeQ[ (#+4)/2]&)]] (* Harvey P. Dale, May 24 2015 *)
PROG
(PARI) n=0; pr=1/2; forprime(p=2, 1e4, n++; pr*=p; if(ispseudoprime(pr+2), print1(n", "))) \\ Charles R Greathouse IV, Jul 25 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Dec 29 2001
EXTENSIONS
More terms from Robert G. Wilson v, Dec 30 2001
a(19)-a(22) from Jason Earls, Dec 12 2006
a(23) from Ray Chandler, Jun 16 2013
a(24)-a(27) from Robert Price, Sep 29 2017
STATUS
approved