login
A066936
Integers k such that prime(k)-1 == 0 (mod phi(k)) where prime(n)=A000040(n) is the n-th prime and phi(n)=A000010(n) is the Euler totient function.
3
1, 2, 3, 4, 6, 10, 11, 12, 14, 18, 21, 24, 30, 38, 42, 46, 67, 84, 87, 110, 121, 136, 159, 279, 306, 378, 428, 439, 516, 662, 682, 726, 1046, 1110, 1199, 1410, 1687, 2160, 2244, 2438, 2450, 2612, 2614, 2654, 3270, 3477, 3829, 7107, 7178, 8682, 9260
OFFSET
1,2
LINKS
MATHEMATICA
Select[Range[1, 10000], Mod[Prime[ # ]-1, EulerPhi[ # ]]==0&]
PROG
(PARI) { default(primelimit, 4294965247); n=0; for (m=1, 10^10, if ((prime(m) - 1) % eulerphi(m) == 0, write("b066936.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Apr 09 2010
(Magma) [n:n in [1..10000]| IsIntegral((NthPrime(n)-1)/EulerPhi(n))]; // Marius A. Burtea, Mar 25 2019
CROSSREFS
Sequence in context: A347733 A347798 A047417 * A067027 A275108 A005457
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 24 2002
EXTENSIONS
Edited by Dean Hickerson, Jan 27 2002
Definition corrected by Harry J. Smith, Apr 09 2010
STATUS
approved