|
|
A260553
|
|
Primes p such that p = q^2 + 2*r^2 where q and r are also primes.
|
|
6
|
|
|
17, 43, 59, 67, 107, 139, 251, 307, 347, 379, 547, 587, 859, 1699, 1867, 1931, 3371, 3499, 3739, 4507, 5059, 5347, 6907, 6971, 7451, 10091, 10627, 10667, 11467, 12491, 18787, 20411, 21227, 22907, 29947, 32059, 32779, 37547, 38651, 39619, 49307, 49747, 53147
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
43 is in the sequence because 43 = 5^2 + 2*3^2 and 43, 5 and 3 are all primes.
|
|
MATHEMATICA
|
Select[#1^2 + 2 #2^2 & @@ # & /@ Tuples[Prime@ Range@ 60, 2], PrimeQ] // Sort (* Michael De Vlieger, Jul 29 2015 *)
|
|
PROG
|
(PARI) lista(nn)=forprime(p=2, nn, forprime(r=2, sqrtint(p\2), if (issquare(q2 = p-2*r^2) && isprime(sqrtint(q2)), print1(p, ", ")); ); ); \\ Michel Marcus, Jul 29 2015
(Python)
from sympy import prime, isprime
n = 5000
A260553_list, plimit = [], prime(n)**2+8
for i in range(1, n):
....q = 2*prime(i)**2
....for j in range(1, n):
........p = q + prime(j)**2
........if p < plimit and isprime(p):
|
|
CROSSREFS
|
Main entry for this sequence is A201613.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|