login
A260555
Primes p such that p = q^2 + 6*r^2 where q and r are also primes.
5
73, 79, 103, 193, 199, 223, 271, 313, 439, 463, 751, 823, 991, 1039, 1063, 1087, 1303, 1423, 1543, 1567, 1663, 1759, 1783, 1831, 1873, 1999, 2143, 2287, 2383, 2503, 2833, 3343, 3463, 3583, 3631, 3823, 3847, 3943, 4447, 4513, 4639, 4783, 5023, 5167, 5407
OFFSET
1,1
COMMENTS
Green & Sawhney prove that this sequence is infinite. - Charles R Greathouse IV, Oct 08 2024
LINKS
Ben Green and Mehtaab Sawhney, Primes of the form p^2 + nq^2, arXiv preprint (2024). arXiv:2410.04189 [math.NT]
EXAMPLE
73 is in the sequence because 73 = 7^2 + 6*2^2 and 73, 7 and 2 are all primes.
MATHEMATICA
Select[#1^2 + 6 #2^2 & @@ # & /@ Tuples[Prime@ Range@ 60, 2], PrimeQ] // Sort (* Michael De Vlieger, Jul 29 2015 *)
PROG
(PARI) list(lim)=my(v=List()); lim\=1; forprime(q=2, sqrtint((lim-9)\6), my(t=6*q^2); forprime(p=3, sqrtint(lim-t), my(r=t+p^2); if(isprime(r), listput(v, r)))); Set(v) \\ Charles R Greathouse IV, Oct 08 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Colin Barker, Jul 29 2015
STATUS
approved