login
A260556
Primes p such that p = q^2 + 8*r^2 where q and r are also primes.
5
41, 97, 193, 241, 401, 433, 601, 977, 1033, 1361, 1753, 2281, 2897, 3793, 4241, 4561, 5113, 6737, 6961, 7993, 10273, 11953, 12841, 13457, 17681, 22273, 22481, 26641, 27961, 32833, 37321, 42641, 49801, 49937, 54361, 57193, 58153, 63073, 63377, 76801, 94321
OFFSET
1,1
LINKS
Colin Barker and Chai Wah Wu, Table of n, a(n) for n = 1..1510 (terms for n = 1..100 from Colin Barker).
EXAMPLE
601 is in the sequence because 601 = 23^2 + 8*3^2 and 601, 23 and 3 are all primes.
MATHEMATICA
Select[#1^2 + 8 #2^2 & @@ # & /@ Tuples[Prime@ Range@ 80, 2], PrimeQ] // Sort (* Michael De Vlieger, Jul 29 2015 *)
PROG
(Python)
from sympy import prime, isprime
n = 5000
A260556_list, plimit = [], prime(n)**2+32
for i in range(1, n):
....q = 8*prime(i)**2
....for j in range(1, n):
........p = q + prime(j)**2
........if p < plimit and isprime(p):
............A260556_list.append(p)
A260556_list = sorted(A260556_list) # Chai Wah Wu, Jul 30 2015
(PARI) lista(nn) = {forprime(p=2, nn, forprime(r=2, sqrtint(p\8), if (issquare(q2 = p-8*r^2) && isprime(sqrtint(q2)), print1(p, ", ")); ); ); } \\ Michel Marcus, Aug 01 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Colin Barker, Jul 29 2015
STATUS
approved