login
A260557
Primes p such that p = q^2 + 10*r^2 where q and r are also primes.
5
89, 139, 211, 379, 401, 419, 499, 569, 619, 659, 881, 1019, 1051, 1091, 1259, 1409, 1451, 1459, 1499, 1571, 1619, 1699, 1721, 1811, 1889, 1931, 1979, 2099, 2339, 2459, 2531, 2579, 2699, 2939, 3011, 3251, 3299, 3371, 3539, 3571, 3659, 3761, 3779, 3851, 4019
OFFSET
1,1
COMMENTS
Green & Sawhney prove that this sequence is infinite. - Charles R Greathouse IV, Oct 08 2024
LINKS
Ben Green and Mehtaab Sawhney, Primes of the form p^2 + nq^2, arXiv preprint (2024). arXiv:2410.04189 [math.NT]
EXAMPLE
419 is in the sequence because 419 = 13^2 + 10*5^2 and 419, 13 and 5 are all primes.
MATHEMATICA
Select[#1^2 + 10 #2^2 & @@ # & /@ Tuples[Prime@ Range@ 36, 2], PrimeQ] // Sort (* Michael De Vlieger, Jul 29 2015 *)
PROG
(PARI) list(lim)=my(v=List()); lim\=1; forprime(q=2, sqrtint((lim-9)\10), my(t=10*q^2); forprime(p=3, sqrtint(lim-t), my(r=t+p^2); if(isprime(r), listput(v, r)))); Set(v) \\ Charles R Greathouse IV, Oct 08 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Colin Barker, Jul 29 2015
STATUS
approved