|
|
A201613
|
|
Primes of the form p^2 + 2q^2 with p and q odd primes.
|
|
3
|
|
|
43, 59, 67, 107, 139, 251, 307, 347, 379, 547, 587, 859, 1699, 1867, 1931, 3371, 3499, 3739, 4507, 5059, 5347, 6907, 6971, 7451, 10091, 10627, 10667, 11467, 12491, 18787, 20411, 21227, 22907, 29947, 32059, 32779, 37547, 38651, 39619, 49307, 49747, 53147, 55787
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
One of primes p, q must be 3, hence we have two sets of primes: 9+2*p^2 and p^2+18 with p > 3.
Note that if we allow 2 for p or q then there is another "set" of primes of the form p^2+8 (q=2) with odd prime p -- this set contains only the prime 17=3^2+8.
|
|
LINKS
|
|
|
EXAMPLE
|
43=5^2+2*3^2, 59=3^2+2*5^2, 67=7^2+2*3^2.
|
|
PROG
|
(PARI) list(lim)=my(v=List(), t); forprime(p=5, sqrtint(lim\1-18), if(isprime(t=p^2+18), listput(v, t))); forprime(q=5, sqrtint((lim-9)\2), if(isprime(t=2*q^2+9), listput(v, t))); Set(v) \\ Charles R Greathouse IV, Aug 26 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|