login
A109998
Non-Cunningham primes: primes isolated from any Cunningham chain under any iteration of 2p+-1 or (p+-1)/2.
5
17, 43, 67, 71, 101, 103, 109, 127, 137, 149, 151, 163, 181, 197, 223, 241, 257, 269, 283, 311, 317, 349, 353, 373, 389, 401, 409, 433, 449, 461, 463, 487, 521, 523, 557, 569, 571, 599, 617, 631, 643, 647, 677, 701, 709, 739, 751, 769, 773, 787, 797, 821
OFFSET
1,1
COMMENTS
The condition that neither 2p - 1 nor 2p + 1 be prime is equivalent to ((p-1) mod 3 = 0) or ((p+1) mod 3 = 0). For example, the prime p = 2^607 - 1 is not in this sequence because p + 1 mod 3 = 2. - Washington Bomfim, Oct 30 2009
LINKS
Chris Caldwell's Prime Glossary, Cunningham chains.
Douglas S. Stones, On prime chains, arXiv:0908.2166 [math.NT] [From Washington Bomfim, Oct 30 2009, edited by R. J. Mathar, Mar 01 2010]
EXAMPLE
a(1) = 17 is here because 17 * 2 + 1 = 35, 17 * 2 - 1 = 33; (17+1)/2 = 9, (17-1)/2 = 8: four composite numbers.
MATHEMATICA
nonCunninghamPrimes = {}; Do[p = Prime[n]; If[!PrimeQ[2p - 1] && !PrimeQ[2p + 1] && !PrimeQ[(p - 1)/2] && !PrimeQ[(p + 1)/2], AppendTo[nonCunninghamPrimes, p]], {n, 6!}]; nonCunninghamPrimes (* Vladimir Joseph Stephan Orlovsky, Mar 22 2009 *)
KEYWORD
easy,nonn
AUTHOR
Alexandre Wajnberg, Sep 01 2005
EXTENSIONS
Corrected and extended by Ray Chandler, Sep 02 2005
Replaced link to cached arXiv URL with link to the abstract - R. J. Mathar, Mar 01 2010
STATUS
approved