The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109996 Primes p such that the arithmetic mean of the fractional parts of p/1, p/2, ..., p/p is larger than 1 - gamma = 0.422784... 2
23, 47, 53, 59, 71, 83, 89, 107, 131, 139, 149, 167, 179, 191, 223, 227, 239, 251, 263, 269, 293, 311, 317, 347, 349, 359, 383, 389, 419, 431, 439, 449, 461, 467, 479, 491, 503, 509, 557, 569, 571, 587, 593, 599, 607, 619, 643, 647, 659, 683, 701, 719, 727 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
REFERENCES
S. R. Finch. Mathematical Constants. Cambridge University Press, 2003 ISBN 0-521-81802-2 p. 29.
Stefan Kraemer. Eulers constant and related numbers, preprint, 2005.
LINKS
MAPLE
H:= proc(n) H(n):= 1/n+`if`(n=1, 0, H(n-1)) end:
a:= proc(n) option remember; local c, p; Digits := 1000;
c:= evalf(1-gamma);
p:=`if`(n=1, 1, a(n-1));
do p:= nextprime(p);
if H(p)-add(iquo(p, i), i=1..p)/p>c
then return p fi
od
end:
seq(a(n), n=1..70); # Alois P. Heinz, Jun 14 2013
MATHEMATICA
Reap[For[p = 2, p < 1000, p = NextPrime[p], If[Mean[FractionalPart /@ (p/Range[p])] > 1-EulerGamma, Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 28 2021 *)
PROG
(PARI) lista(nn) = {forprime(p=2, nn, if (sum (i=1, p, p/i - floor(p/i))/p > 1- Euler, print1(p, ", ")); ); } \\ Michel Marcus, Jun 14 2013
CROSSREFS
Cf. A153810 (1-gamma).
Sequence in context: A344133 A103629 A253177 * A188833 A121762 A185935
KEYWORD
nonn
AUTHOR
Stefan Krämer, Sep 01 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 00:34 EDT 2024. Contains 372608 sequences. (Running on oeis4.)