login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279199 Number of reducible ways to split 1, 2, 3, ..., 3n into n arithmetic progressions each with 3 terms: a(n) = A104429(n) - A202705(n). 10
0, 0, 1, 3, 9, 30, 117, 512, 2597, 14892, 99034, 721350, 5909324, 52578654, 516148082, 5422071091, 61889692290, 749456672155 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, Univ. Calgary, Dept. Mathematics, Research Paper No. 129, 1971.

R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.

R. K. Guy, Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics, in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.

LINKS

Table of n, a(n) for n=0..17.

R. K. Guy, Letter to N. J. A. Sloane, June 24 1971: front, back [Annotated scanned copy, with permission] See sequence "L".

R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]

CROSSREFS

All of A279197, A279198, A202705, A279199, A104429, A282615 are concerned with counting solutions to X+Y=2Z in various ways.

See also A002848, A002849.

Sequence in context: A120018 A354120 A091353 * A352280 A292758 A297198

Adjacent sequences:  A279196 A279197 A279198 * A279200 A279201 A279202

KEYWORD

nonn,more

AUTHOR

N. J. A. Sloane, Dec 15 2016

EXTENSIONS

Definition corrected by N. J. A. Sloane, Jan 09 2017 at the suggestion of Fausto A. C. Cariboni.

a(15)-a(17) from Fausto A. C. Cariboni, Feb 22 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 11:16 EDT 2022. Contains 353871 sequences. (Running on oeis4.)