|
|
A279199
|
|
Number of reducible ways to split 1, 2, 3, ..., 3n into n arithmetic progressions each with 3 terms: a(n) = A104429(n) - A202705(n).
|
|
10
|
|
|
0, 0, 1, 3, 9, 30, 117, 512, 2597, 14892, 99034, 721350, 5909324, 52578654, 516148082, 5422071091, 61889692290, 749456672155
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
REFERENCES
|
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, Univ. Calgary, Dept. Mathematics, Research Paper No. 129, 1971.
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.
R. K. Guy, Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics, in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.
|
|
LINKS
|
Table of n, a(n) for n=0..17.
R. K. Guy, Letter to N. J. A. Sloane, June 24 1971: front, back [Annotated scanned copy, with permission] See sequence "L".
R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]
|
|
CROSSREFS
|
All of A279197, A279198, A202705, A279199, A104429, A282615 are concerned with counting solutions to X+Y=2Z in various ways.
See also A002848, A002849.
Sequence in context: A120018 A354120 A091353 * A352280 A292758 A297198
Adjacent sequences: A279196 A279197 A279198 * A279200 A279201 A279202
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
N. J. A. Sloane, Dec 15 2016
|
|
EXTENSIONS
|
Definition corrected by N. J. A. Sloane, Jan 09 2017 at the suggestion of Fausto A. C. Cariboni.
a(15)-a(17) from Fausto A. C. Cariboni, Feb 22 2017
|
|
STATUS
|
approved
|
|
|
|