The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002848 Maximal number of disjoint subsets {X,Y,Z} of {1, 2, ..., n} with X + Y = Z (as in A002849), with the property that n is in one of the subsets. (Formerly M0295 N0106) 10
 0, 0, 0, 1, 1, 2, 2, 3, 7, 15, 12, 30, 8, 32, 164, 21, 114, 867, 3226, 720, 4414, 24412, 4079, 31454, 3040, 25737, 252727, 20505, 191778, 2140186, 14554796, 1669221, 17754992, 148553131, 14708525, 177117401, 10567748, 138584026, 1953134982, 103372655, 1431596750, 22374792451, 218018425976 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 REFERENCES R. K. Guy, "Sedlacek's Conjecture on Disjoint Solutions of x+y= z," in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223. R. K. Guy, "Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics," in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976. Richard K. Guy, The unity of combinatorics, in Proc. 25th Iran. Math. Conf., Tehran, (1994), Math. Appl. 329 (1994) 129-159, Kluwer Acad. Publ., Dordrecht, 1995. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS R. K. Guy, Letter to N. J. A. Sloane, June 24 1971: front, back [Annotated scanned copy, with permission] R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, Univ. Calgary, Dept. Mathematics, Research Paper No. 129, 1971. [Annotated scanned copy, with permission] Nigel Martin, Solving a conjecture of Sedlacek: maximal edge sets in the 3-uniform sumset hypergraphs, Discrete Mathematics, Volume 125, 1994, pp. 273-277. FORMULA a(n) = A002849(n) for n == 0,3,7,10 (mod 12), 0 for n=1, and A002849(n) - A002849(n-1) otherwise. - Franklin T. Adams-Watters EXAMPLE Examples from Alois P. Heinz, Feb 12 2010: A002848(7) = 3: [1, 3, 4], [2, 5, 7] [1, 5, 6], [3, 4, 7] [2, 3, 5], [1, 6, 7] A002848(8) = 7: [1, 3, 4], [2, 6, 8] [1, 4, 5], [2, 6, 8] [1, 6, 7], [3, 5, 8] [2, 3, 5], [1, 7, 8] [2, 4, 6], [1, 7, 8] [2, 4, 6], [3, 5, 8] [3, 4, 7], [2, 6, 8] A002848(10) = 12: [1, 4, 5], [2, 6, 8], [3, 7, 10] [1, 4, 5], [3, 6, 9], [2, 8, 10] [1, 5, 6], [3, 4, 7], [2, 8, 10] [1, 6, 7], [4, 5, 9], [2, 8, 10] [1, 7, 8], [2, 3, 5], [4, 6, 10] [1, 8, 9], [2, 3, 5], [4, 6, 10] [1, 8, 9], [2, 4, 6], [3, 7, 10] [1, 8, 9], [2, 5, 7], [4, 6, 10] [2, 4, 6], [3, 5, 8], [1, 9, 10] [2, 6, 8], [3, 4, 7], [1, 9, 10] [2, 6, 8], [4, 5, 9], [3, 7, 10] [2, 7, 9], [3, 5, 8], [4, 6, 10] See A002849 for further examples. CROSSREFS Cf. A002849, A108235, A161826. Sequence in context: A060357 A064714 A152255 * A032257 A038075 A032236 Adjacent sequences:  A002845 A002846 A002847 * A002849 A002850 A002851 KEYWORD nonn AUTHOR EXTENSIONS Edited by N. J. A. Sloane, Feb 10 2010, based on posting to the Sequence Fans Mailing List by Franklin T. Adams-Watters, R. K. Guy, R. H. Hardin, Alois P. Heinz, Andrew Weimholt, Max Alekseyev and others a(32)-a(39) from Max Alekseyev, Feb 23 2012 Definition corrected by Max Alekseyev, Nov 16 2012 a(40)-a(42) from Fausto A. C. Cariboni, Mar 12 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 04:49 EDT 2021. Contains 343030 sequences. (Running on oeis4.)