login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038075
Number of rooted identity trees with 2-colored leaves.
7
2, 2, 3, 7, 16, 41, 110, 304, 858, 2474, 7234, 21418, 64057, 193277, 587531, 1797817, 5532916, 17115442, 53186682, 165958893, 519764706, 1633331926, 5148420607, 16273962742, 51574291758, 163834983761, 521597902077, 1663993969029, 5318540288800, 17029516243797
OFFSET
1,1
FORMULA
Shifts left under Weigh transform.
a(n) ~ c * d^n / n^(3/2), where d = 3.3683668081969694736300401764..., c = 0.4229796097587478606873477... . - Vaclav Kotesovec, Sep 10 2014
G.f. A(x) satisfies: A(x) = x + x * exp( Sum_{k>=1} (-1)^(k+1) * A(x^k) / k ). - Ilya Gutkovskiy, May 19 2023
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(a(i$2), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> `if`(n<2, 2*n, b(n-1, n-1)):
seq(a(n), n=1..35); # Alois P. Heinz, Aug 01 2013
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i], j]*b[n- i*j, i-1], {j, 0, n/i}]]];
a[n_] := If[n<2, 2*n, b[n-1, n-1]];
Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A152255 A002848 A032257 * A032236 A128776 A117387
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jan 04 1999
STATUS
approved