Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 May 19 2023 10:57:11
%S 2,2,3,7,16,41,110,304,858,2474,7234,21418,64057,193277,587531,
%T 1797817,5532916,17115442,53186682,165958893,519764706,1633331926,
%U 5148420607,16273962742,51574291758,163834983761,521597902077,1663993969029,5318540288800,17029516243797
%N Number of rooted identity trees with 2-colored leaves.
%H Alois P. Heinz, <a href="/A038075/b038075.txt">Table of n, a(n) for n = 1..600</a>
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%F Shifts left under Weigh transform.
%F a(n) ~ c * d^n / n^(3/2), where d = 3.3683668081969694736300401764..., c = 0.4229796097587478606873477... . - _Vaclav Kotesovec_, Sep 10 2014
%F G.f. A(x) satisfies: A(x) = x + x * exp( Sum_{k>=1} (-1)^(k+1) * A(x^k) / k ). - _Ilya Gutkovskiy_, May 19 2023
%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p add(binomial(a(i$2), j)*b(n-i*j, i-1), j=0..n/i)))
%p end:
%p a:= n-> `if`(n<2, 2*n, b(n-1, n-1)):
%p seq(a(n), n=1..35); # _Alois P. Heinz_, Aug 01 2013
%t b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i], j]*b[n- i*j, i-1], {j, 0, n/i}]]];
%t a[n_] := If[n<2, 2*n, b[n-1, n-1]];
%t Table[a[n], {n, 1, 35}] (* _Jean-François Alcover_, Mar 01 2016, after _Alois P. Heinz_ *)
%Y Cf. A004111, A038076.
%K nonn
%O 1,1
%A _Christian G. Bower_, Jan 04 1999