login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002849
Number of maximal collections of pairwise disjoint subsets {X,Y,Z} of {1, 2, ..., n}, each satisfying X + Y = Z.
(Formerly M0980 N0368)
11
1, 1, 1, 2, 4, 6, 3, 10, 25, 12, 42, 8, 40, 204, 21, 135, 1002, 4228, 720, 5134, 29546, 4079, 35533, 3040, 28777, 281504, 20505, 212283, 2352469, 16907265, 1669221, 19424213, 167977344, 14708525, 191825926, 10567748, 149151774, 2102286756, 103372655, 1534969405
OFFSET
1,4
REFERENCES
R. K. Guy, "Sedlacek's Conjecture on Disjoint Solutions of x+y= z," in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.
R. K. Guy, "Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics," in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Frank Niedermeyer, Table of n, a(n) for n = 1..44 (first 42 terms from Fausto A. C. Cariboni)
R. K. Guy, Letter to N. J. A. Sloane, Jun 24 1971: front, back [Annotated scanned copy, with permission]
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, Univ. Calgary, Dept. Mathematics, Research Paper No. 129, 1971. [Annotated scanned copy, with permission]
Richard K. Guy, The unity of combinatorics, in Proc. 25th Iran. Math. Conf., Tehran, (1994), Math. Appl. 329 (1994) 129-159, Kluwer Acad. Publ., Dordrecht, 1995.
Nigel Martin, Solving a conjecture of Sedlacek: maximal edge sets in the 3-uniform sumset hypergraphs, Discrete Mathematics, Volume 125, 1994, pp. 273-277.
R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]
EXAMPLE
For n = 3, the unique solution is 1 + 2 = 3.
For n = 12, there are 8 solutions:
1 5 6 | 1 5 6 | 2 5 7 | 1 6 7
2 8 10 | 3 7 10 | 3 6 9 | 4 5 9
4 7 11 | 2 9 11 | 1 10 11 | 3 8 11
3 9 12 | 4 8 12 | 4 8 12 | 2 10 12
--------+---------+---------+--------
2 4 6 | 2 6 8 | 3 4 7 | 3 5 8
1 9 10 | 4 5 9 | 1 8 9 | 2 7 9
3 8 11 | 3 7 10 | 5 6 11 | 4 6 10
5 7 12 | 1 11 12 | 2 10 12 | 1 11 12
PROG
(PARI) nxyz(v, t)=local(n, r, x2); r=0; if(t==0, return(1)); for(i3=3*t, #v, n=v[i3]; for(i1=1, i3-2, x2=n-v[i1]; if(x2<=v[i1], break); for(i2=i1+1, i3-1, if(v[i2]>=x2, if(v[i2]==x2, r+=nxyz(vector(i3-3, k, v[if(k<i1, k, if(k<i2-1, k+1, k+2))]), t-1)); break)))); r
a(n)=nxyz(vector(n, k, k), n\3-(n%12==6 || n%12==9)) \\ Franklin T. Adams-Watters
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Edited by N. J. A. Sloane, Feb 10 2010, based on posting to the Sequence Fans Mailing List by Franklin T. Adams-Watters, R. K. Guy, R. H. Hardin, Alois P. Heinz, Andrew Weimholt, Max Alekseyev and others
a(32)-a(39) from Max Alekseyev, Feb 23 2012
Definition corrected by Max Alekseyev, Nov 16 2012, Jul 06 2023
a(40)-a(41) from Fausto A. C. Cariboni, Feb 04 2017
a(42) from Fausto A. C. Cariboni, Mar 12 2017
STATUS
approved