login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of maximal collections of pairwise disjoint subsets {X,Y,Z} of {1, 2, ..., n}, each satisfying X + Y = Z.
(Formerly M0980 N0368)
11

%I M0980 N0368 #87 Oct 29 2023 01:48:05

%S 1,1,1,2,4,6,3,10,25,12,42,8,40,204,21,135,1002,4228,720,5134,29546,

%T 4079,35533,3040,28777,281504,20505,212283,2352469,16907265,1669221,

%U 19424213,167977344,14708525,191825926,10567748,149151774,2102286756,103372655,1534969405

%N Number of maximal collections of pairwise disjoint subsets {X,Y,Z} of {1, 2, ..., n}, each satisfying X + Y = Z.

%D R. K. Guy, "Sedlacek's Conjecture on Disjoint Solutions of x+y= z," in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.

%D R. K. Guy, "Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics," in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Frank Niedermeyer, <a href="/A002849/b002849.txt">Table of n, a(n) for n = 1..44</a> (first 42 terms from Fausto A. C. Cariboni)

%H R. K. Guy, Letter to N. J. A. Sloane, Jun 24 1971: <a href="/A002572/a002572.jpg">front</a>, <a href="/A002572/a002572_1.jpg">back</a> [Annotated scanned copy, with permission]

%H R. K. Guy, <a href="/A002848/a002848.pdf">Sedlacek's Conjecture on Disjoint Solutions of x+y= z</a>, Univ. Calgary, Dept. Mathematics, Research Paper No. 129, 1971. [Annotated scanned copy, with permission]

%H Richard K. Guy, <a href="http://dx.doi.org/10.1007/978-1-4613-3554-2_9">The unity of combinatorics</a>, in Proc. 25th Iran. Math. Conf., Tehran, (1994), Math. Appl. 329 (1994) 129-159, Kluwer Acad. Publ., Dordrecht, 1995.

%H Christian Hercher and Frank Niedermeyer, <a href="https://arxiv.org/abs/2307.00303">Efficient Calculation the Number of Partitions of the Set {1, 2, ..., 3n} into Subsets {x, y, z} Satisfying x + y = z</a>, arXiv:2307.00303 [math.CO], 2023.

%H Nigel Martin, <a href="http://dx.doi.org/10.1016/0012-365X(94)90168-6">Solving a conjecture of Sedlacek: maximal edge sets in the 3-uniform sumset hypergraphs</a>, Discrete Mathematics, Volume 125, 1994, pp. 273-277.

%H Matheplanet <a href="https://matheplanet.de/default3.html?article=1899">Calculating sequence element a(16) of OEIS A108235</a>

%H R. J. Nowakowski, <a href="/A104429/a104429.pdf">Generalizations of the Langford-Skolem problem</a>, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]

%e For n = 3, the unique solution is 1 + 2 = 3.

%e For n = 12, there are 8 solutions:

%e 1 5 6 | 1 5 6 | 2 5 7 | 1 6 7

%e 2 8 10 | 3 7 10 | 3 6 9 | 4 5 9

%e 4 7 11 | 2 9 11 | 1 10 11 | 3 8 11

%e 3 9 12 | 4 8 12 | 4 8 12 | 2 10 12

%e --------+---------+---------+--------

%e 2 4 6 | 2 6 8 | 3 4 7 | 3 5 8

%e 1 9 10 | 4 5 9 | 1 8 9 | 2 7 9

%e 3 8 11 | 3 7 10 | 5 6 11 | 4 6 10

%e 5 7 12 | 1 11 12 | 2 10 12 | 1 11 12

%o (PARI) nxyz(v,t)=local(n,r,x2); r=0; if(t==0,return(1)); for(i3=3*t,#v, n=v[i3]; for(i1=1,i3-2, x2=n-v[i1]; if(x2<=v[i1],break); for(i2=i1+1,i3-1, if(v[i2]>=x2, if(v[i2]==x2, r+=nxyz(vector(i3-3,k,v[if(k<i1,k,if(k<i2-1,k+1,k+2))]),t-1)); break)))); r

%o a(n)=nxyz(vector(n,k,k),n\3-(n%12==6 || n%12==9)) \\ _Franklin T. Adams-Watters_

%Y Cf. A002848, A108235, A161826.

%K nonn

%O 1,4

%A _N. J. A. Sloane_

%E Edited by _N. J. A. Sloane_, Feb 10 2010, based on posting to the Sequence Fans Mailing List by _Franklin T. Adams-Watters_, _R. K. Guy_, _R. H. Hardin_, _Alois P. Heinz_, _Andrew Weimholt_, _Max Alekseyev_ and others

%E a(32)-a(39) from _Max Alekseyev_, Feb 23 2012

%E Definition corrected by _Max Alekseyev_, Nov 16 2012, Jul 06 2023

%E a(40)-a(41) from _Fausto A. C. Cariboni_, Feb 04 2017

%E a(42) from _Fausto A. C. Cariboni_, Mar 12 2017