OFFSET
0,3
COMMENTS
a(n) is the number of rooted labeled forests on n nodes so that along any path from the root to a vertex, there is at most one descent.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..200
FORMULA
a(n) = n! + Sum_{k=1..n} Sum_{j=1..min(k, n-k)} (n!/2^j)*binomial(n-k-1, j-1)*binomial(k, j).
MATHEMATICA
a[n_] := n! + Sum[n! 2^-j Binomial[n-k-1, j-1] Binomial[k, j], {k, 1, n}, {j, 1, Min[k, n-k]}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Sep 13 2018 *)
PROG
(PARI) a(n) = {n! + sum(k=1, n, sum(j=1, min(k, n-k), n!/(2^j)*binomial(n-k-1, j-1)*binomial(k, j)))} \\ Andrew Howroyd, Aug 31 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Kassie Archer, Aug 30 2018
STATUS
approved