login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354124
G.f. A(x) satisfies: 1 = Sum_{n>=0} x^n * (1 + x^n*A(x))^n / (1 + x^(n+1)*A(x))^(n+1).
2
1, 3, 7, 17, 37, 77, 143, 218, 205, -260, -2120, -7359, -18850, -36275, -38243, 75763, 636582, 2518615, 7562260, 18326392, 33734309, 29439139, -106574279, -745021520, -2876904500, -8612026926, -20904359944, -38363726381, -31422406713, 137039078742, 925573761117
OFFSET
0,2
COMMENTS
The signs of the coefficients seem to fall into a cycle of period 14:
sign( a(7*n+k) ) = (-1)^n for k=1..7, n > 1 (conjecture).
LINKS
EXAMPLE
G.f.: A(x) = 1 + 3*x + 7*x^2 + 17*x^3 + 37*x^4 + 77*x^5 + 143*x^6 + 218*x^7 + 205*x^8 - 260*x^9 - 2120*x^10 - 7359*x^11 - 18850*x^12 - 36275*x^13 - 38243*x^14 + 75763*x^15 + ...
such that
1 = 1/(1 + x*A(x)) + x*(1 + x*A(x))/(1 + x^2*A(x))^2 + x^2*(1 + x^2*A(x))^2/(1 + x^3*A(x))^3 + x^3*(1 + x^3*A(x))^3/(1 + x^4*A(x))^4 + x^4*(1 + x^4*A(x))^4/(1 + x^5*A(x))^5 + x^5*(1 + x^5*A(x))^5/(1 + x^6*A(x))^6 + ...
which, upon setting A = A(x), is equivalent to
1 = 1 + (1 - A)*x + (1 + A + A^2)*x^2 + (1 - 2*A - A^3)*x^3 + (1 + 2*A - 2*A^2 + A^4)*x^4 + (1 - 3*A + 3*A^2 - A^5)*x^5 + (1 + 3*A + A^2 + 3*A^3 + A^6)*x^6 + (1 - 4*A - 6*A^2 - 4*A^3 - A^7)*x^7 + (1 + 4*A + 6*A^2 - 4*A^4 + A^8)*x^8 + (1 - 5*A + 3*A^2 - 3*A^3 + 5*A^4 - A^9)*x^9 + (1 + 5*A - 12*A^2 + 12*A^3 + 5*A^5 + A^10)*x^10 + (1 - 6*A + 10*A^2 - 10*A^3 - 6*A^5 - A^11)*x^11 + (1 + 6*A + 6*A^2 + A^3 + 6*A^4 - 6*A^6 + A^12)*x^12 + (1 - 7*A - 20*A^2 - 12*A^3 - 20*A^4 + 7*A^6 - A^13)*x^13 + (1 + 7*A + 15*A^2 + 30*A^3 + 15*A^4 + 7*A^7 + A^14)*x^14 + (1 - 8*A + 10*A^2 - 20*A^3 - 10*A^5 - 8*A^7 - A^15)*x^15 + (1 + 8*A - 30*A^2 + 4*A^3 - 4*A^4 + 30*A^5 - 8*A^8 + A^16)*x^16 + ...
PATTERN OF SIGNS.
The signs (+-1) of the terms begin:
[+, +, +, +, +, +, +, +, +, -, -, -, -, -, -, +, +, +, +, +, +, +, -, -, -, -, -, -, -, +, +, +, +, +, +, +, -, -, -, -, -, -, -, +, +, +, +, +, +, +, -, -, -, -, -, -, -, +, +, +, +, +, +, +, -, -, -, -, -, -, -, +, +, +, +, +, +, +, -, -, -, -, -, -, -, +, +, +, +, +, +, +, -, -, -, -, -, -, -, +, +, +, +, +, +, +, -, ...]
which seems to follow the rule: sign( a(7*n+k) ) = (-1)^n for k=1..7, n > 1.
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(m=0, #A, x^m * (1 + x^m*Ser(A))^m / (1 + x^(m+1)*Ser(A))^(m+1) ), #A)); H=A; A[n+1]}
for(n=0, 60, print1(a(n), ", "))
CROSSREFS
Sequence in context: A295146 A014314 A221792 * A089099 A089116 A244629
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 17 2022
STATUS
approved