login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354127
Triangle read by rows: T(n, k) is the number of graphs obtained by adding k pierced circles to a path graph P_n.
0
1, 1, 0, 2, 2, 0, 12, 10, 3, 0, 82, 82, 28, 4, 0, 646, 738, 315, 60, 5, 0, 5574, 7198, 3636, 900, 110, 6, 0, 51386, 74086, 43225, 13020, 2135, 182, 7, 0, 498026, 793490, 524784, 185920, 37940, 4452, 280, 8, 0, 5019720, 8761906, 6475959, 2634912, 642180, 95508, 8442, 408, 9, 0
OFFSET
0,4
LINKS
Nicholas Owad and Anastasiia Tsvietkova, Random meander model for links, arXiv:2205.03451 [math.GT], 2022.
FORMULA
T(n, k) = Sum_{m=k..n} (-1)^(m+k)*binomial(m, k)*O(m, n), with O(k, s) = binomial(2*s-k-1, k)*C(s-k)^2 (see Lemma 3.3 at page 7 in Owad and Tsvietkova).
T(n, n-2) = A006331(n-1).
EXAMPLE
The triangle begins
1;
1, 0;
2, 2, 0;
12, 10, 3, 0;
82, 82, 28, 4, 0;
646, 738, 315, 60, 5, 0;
...
MATHEMATICA
bigO[k_, s_]:=Binomial[2s-k-1, k]CatalanNumber[s-k]^2; T[n_, k_]:=Sum[(-1)^(m+k)Binomial[m, k]bigO[m, n], {m, k, n}]; Flatten[Table[T[n, k], {n, 0, 9}, {k, 0, n}]]
CROSSREFS
Cf. A000007 (k = n), A000027 (k = n - 1), A000108, A001246 (row sums), A006331, A007318, A052553.
Sequence in context: A364240 A117270 A244137 * A181389 A369072 A091466
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, May 18 2022
STATUS
approved