|
|
A354127
|
|
Triangle read by rows: T(n, k) is the number of graphs obtained by adding k pierced circles to a path graph P_n.
|
|
0
|
|
|
1, 1, 0, 2, 2, 0, 12, 10, 3, 0, 82, 82, 28, 4, 0, 646, 738, 315, 60, 5, 0, 5574, 7198, 3636, 900, 110, 6, 0, 51386, 74086, 43225, 13020, 2135, 182, 7, 0, 498026, 793490, 524784, 185920, 37940, 4452, 280, 8, 0, 5019720, 8761906, 6475959, 2634912, 642180, 95508, 8442, 408, 9, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
FORMULA
|
T(n, k) = Sum_{m=k..n} (-1)^(m+k)*binomial(m, k)*O(m, n), with O(k, s) = binomial(2*s-k-1, k)*C(s-k)^2 (see Lemma 3.3 at page 7 in Owad and Tsvietkova).
|
|
EXAMPLE
|
The triangle begins
1;
1, 0;
2, 2, 0;
12, 10, 3, 0;
82, 82, 28, 4, 0;
646, 738, 315, 60, 5, 0;
...
|
|
MATHEMATICA
|
bigO[k_, s_]:=Binomial[2s-k-1, k]CatalanNumber[s-k]^2; T[n_, k_]:=Sum[(-1)^(m+k)Binomial[m, k]bigO[m, n], {m, k, n}]; Flatten[Table[T[n, k], {n, 0, 9}, {k, 0, n}]]
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|