login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369072
Triangle read by rows: T(n, k) = floor(binomial(n, k - 1) * (k - 1)^(k - 1) * n * (n - k + 1)^(n - k) / 2).
2
0, 0, 0, 0, 2, 2, 0, 13, 9, 18, 0, 128, 72, 96, 216, 0, 1562, 800, 900, 1350, 3200, 0, 23328, 11250, 11520, 14580, 23040, 56250, 0, 411771, 190512, 183750, 211680, 282240, 459375, 1143072, 0, 8388608, 3764768, 3483648, 3780000, 4587520, 6300000, 10450944, 26353376
OFFSET
0,5
EXAMPLE
Triangle starts:
[0] [0]
[1] [0, 0]
[2] [0, 2, 2]
[3] [0, 13, 9, 18]
[4] [0, 128, 72, 96, 216]
[5] [0, 1562, 800, 900, 1350, 3200]
[6] [0, 23328, 11250, 11520, 14580, 23040, 56250]
[7] [0, 411771, 190512, 183750, 211680, 282240, 459375, 1143072]
MATHEMATICA
A369072[n_, k_] := Floor[Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] n (n-k+1)^(n-k) / 2];
Table[A369072[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2024 *)
PROG
(SageMath)
def A369072(n, k):
return binomial(n, k-1)*(k-1)^(k-1)*n*(n-k+1)^(n-k)//2
for n in range(9): print([A369072(n, k) for k in range(n+1)])
CROSSREFS
Cf. A057065 (column 1), A369027 (main diagonal).
Sequence in context: A244137 A354127 A181389 * A091466 A134085 A151339
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jan 12 2024
STATUS
approved