login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176901
Number of 3 X n semireduced Latin rectangles, that is, having exactly n fixed points in the first two rows.
0
4, 72, 1584, 70720, 3948480, 284570496, 25574768128, 2808243910656, 369925183388160, 57585548812887040, 10458478438093154304, 2191805683821733404672, 525011528578874444283904, 142540766765931981615759360, 43542026550306796238178877440, 14867182204795857282384287236096, 5640920219495105293649671985430528
OFFSET
3,1
COMMENTS
A Latin rectangle is called reduced if its first row is [1,2,...,n] (the number of 3 X n reduced Latin rectangles is given in A000186). Therefore a Latin rectangle having exactly n fixed points in the first two rows may be called "semireduced". Thus if A1(i), A2(i), i=1,...,n, are the first two rows, then, for every i, either A1(i)=i or A2(i)=i.
LINKS
V. S. Shevelev, Reduced Latin rectangles and square matrices with equal row and column sums, Diskr. Mat.(J. of the Akademy of Sciences of Russia) 4(1992), 91-110.
V. S. Shevelev, Modern enumeration theory of permutations with restricted positions, Diskr. Mat., 1993, 5, no.1, 3-35 (Russian).
V. S. Shevelev, Modern enumeration theory of permutations with restricted positions, English translation, Discrete Math. and Appl., 1993, 3:3, 229-263 (pp. 255-257).
FORMULA
Let F_n = A087981(n) = n! * Sum_{2*k_2+...+n*k_n=n, k_i>=0} Product_{i=2..n} 2^k_i/(k_i!*i^k_i). Then a(n) = Sum_{k=0..floor(n/2)} binomial(n,k) * F_k * F_(n-k) * u_(n-2*k), where u(n) = A000179(n). - Vladimir Shevelev, Mar 30 2016
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Apr 28 2010
EXTENSIONS
More terms from William P. Orrick, Jul 25 2020
STATUS
approved