The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176898 a(n) = binomial(6*n, 3*n)*binomial(3*n, n)/(2*(2*n+1)*binomial(2*n, n)). 2
 5, 231, 14586, 1062347, 84021990, 7012604550, 607892634420, 54200780036595, 4938927219474990, 457909109348466930, 43057935618181929900, 4096531994713828810686, 393617202432246696493436, 38142088615983865845923052, 3723160004902167033863327592 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS During April 26-28, 2010, Zhi-Wei Sun introduced this new sequence and proved that a(n) = binomial(6n,3n)*binomial(3n,n)/(2*(2n+1)*binomial(2n,n)) is a positive integer for every n=1,2,3,... He also observed that a(n) is odd if and only if n is a power of two, and that 3a(n)=0 (mod 2n+3). By Stirling's formula, we have lim_n (8n*sqrt(n*Pi)a(n)/108^n) = 1. It is interesting to find a combinatorial interpretation or recursion for the sequence. From Tatiana Hessami Pilehrood, Dec 01 2015: (Start) Zhi-Wei Sun formulated two conjectures concerning a(n) (see Conjectures 1.1 and 1.2 in Z.-W. Sun, "Products and sums divisible by central binomial coefficients" and Conjecture A89 in "Open conjectures on congruences"). The first conjecture states that Sum_{n=1..p-1} a(n)/(108^n) is congruent to 0 or -1 modulo a prime p > 3 depending on whether p is congruent to +-1 or +-5 modulo 12, respectively. The second conjecture asks about an exact formula for a companion sequence of a(n). Both conjectures as well as many numerical congruences involving a(n) and (2n+1)a(n) were solved by Kh. Hessami Pilehrood and T. Hessami Pilehrood, see the link below. (End) LINKS Indranil Ghosh, Table of n, a(n) for n = 1..450 Kh. Hessami Pilehrood, T. Hessami Pilehrood, Jacobi polynomials and congruences involving some higher-order Catalan numbers and binomial coefficients, preprint, arXiv:1504.07944 [math.NT], 2015. K. H. Pilehrood, T. H. Pilehrood, Jacobi Polynomials and Congruences Involving Some Higher-Order Catalan Numbers and Binomial Coefficients, J. Int. Seq. 18 (2015) 15.11.7 M. R. Sepanski, On Divisibility of Convolutions of Central Binomial Coefficients, Electronic Journal of Combinatorics, 21 (1) 2014, #P1.32. Zhi-Wei Sun, Products and sums divisible by central binomial coefficients, preprint, arXiv:1004.4623 [math.NT], 2010. Zhi-Wei Sun, Open conjectures on congruences, preprint, arXiv:0911.5665 [math.NT], 2009-2011. Brian Y. Sun, J. X. Meng, Proof of a Conjecture of Z.-W. Sun on Trigonometric Series, arXiv preprint arXiv:1606.08153 [math.CO], 2016. FORMULA G.f.: (1-6*s)/((12*s-1)*(8*s-2)) - 1/2, where x+(3*s-1)*(12*s-1)^2*s*(4*s-1)^2 = 0. - Mark van Hoeij, May 06 2013 EXAMPLE For n=2 we have a(2) = binomial(12,6)*binomial(6,2)/(2*(2*2+1)*binomial(4,2)) = 231. MAPLE ogf := eval((1-6*s)/((12*s-1)*(8*s-2)) - 1/2, s=RootOf(x+(3*s-1)*(12*s-1)^2*s*(4*s-1)^2, s)); series(ogf, x=0, 30); # Mark van Hoeij, May 06 2013 MATHEMATICA S[n_]:=Binomial[6n, 3n]Binomial[3n, n]/(2(2n+1)Binomial[2n, n]) Table[S[n], {n, 1, 50}] PROG (MAGMA) [Binomial(6*n, 3*n)*Binomial(3*n, n)/(2*(2*n+1)*Binomial(2*n, n)): n in [1..15]]; // Vincenzo Librandi, Dec 02 2015 (PARI) a(n) = binomial(6*n, 3*n) * binomial(3*n, n) / (2*(2*n+1) * binomial(2*n, n)); \\ Indranil Ghosh, Mar 05 2017 (Python) import math f=math.factorial def C(n, r): return f(n)/f(r)/f(n-r) def A176898(n): return C(6*n, 3*n) * C(3*n, n) / (2*(2*n+1) * C(2*n, n)) # Indranil Ghosh, Mar 05 2017 CROSSREFS Cf. A000984, A173774, A176285, A176477. Sequence in context: A157776 A147540 A187366 * A274996 A142668 A330308 Adjacent sequences:  A176895 A176896 A176897 * A176899 A176900 A176901 KEYWORD nonn AUTHOR Zhi-Wei Sun, Apr 28 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 6 00:41 EDT 2021. Contains 343579 sequences. (Running on oeis4.)