OFFSET
3,2
COMMENTS
We say that an element alpha_i of a permutation alpha of {1,2,...,n} has cyclic order k if it belongs to a cycle of length k of alpha. If every cycle of alpha has length k, then k|n.
REFERENCES
V. S. Shevelev, Reduced Latin rectangles and square matrices with equal row and column sums, Diskr. Mat. [Journal published by the Academy of Sciences of Russia], 4 (1992), 91-110.
V. S. Shevelev, Modern enumeration theory of permutations with restricted positions, Diskr. Mat., 1993, 5, no.1, 3-35 (Russian) [English translation in Discrete Math. and Appl., 1993, 3:3, 229-263 (pp. 255-257)].
FORMULA
Let G_n = A000296(n) = n! * Sum_{2*k_2+...+n*k_n=n, k_i>=0} Product_{i=2,...,n} (k_i!*i!^k_i)^(-1). Then a(n) = Sum_{k=0,...,floor(n/2)} binomial(n,k) * G_k * G_(n-k) * u_(n-2*k), where u(n) = A000179(n). - Vladimir Shevelev, Mar 30 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Mar 22 2010
EXTENSIONS
More terms from William P. Orrick, Jul 25 2020
STATUS
approved