OFFSET
1,2
COMMENTS
Alternative definition: a(n) = Product{i = 1..(n-1)}prime(i)^e_i, where prime(i)^e_i is the greatest power of prime(i) which does not exceed prime(n). Every term is a product of prime powers, and also of primorial powers(the greatest of which is A002110(n-1); see Example and A053589). - David James Sycamore, Oct 24 2024
LINKS
Robert Israel, Table of n, a(n) for n = 1..342
FORMULA
EXAMPLE
For n = 7, prime(7) = 17, using the alternative definition (see Comment), a(7) = 2^4*3^2*5^1*7^1*11^1*13^1 = 16*9*5*7*11*13 = 720720 = 24*30030 = 2^2*6*30030 = A002110(1)^2*A002110(2)*A002110(6). - David James Sycamore, Oct 24 2024
MAPLE
Primes:= select(isprime, [2, $3..100]):
seq(ilcm($2..Primes[i]-1), i=1..nops(Primes)); # Robert Israel, Jul 19 2016
MATHEMATICA
LCM@@Range[#]&/@(Prime[Range[20]]-1) (* Harvey P. Dale, Jan 30 2015 *)
PROG
(Magma) [Lcm([2..p-1]): p in PrimesUpTo(70)]; // Bruno Berselli, Feb 06 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Ray Chandler, Oct 29 2004
EXTENSIONS
a(18) from Bruno Berselli, Feb 06 2015
STATUS
approved