login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (2*n)! * [x^(2*n)] (-x/(1 - x))^n/((1 - x)*n!).
6

%I #20 Sep 08 2022 08:46:20

%S 1,-4,72,-2400,117600,-7620480,614718720,-59364264960,6678479808000,

%T -857813628672000,123868287980236800,-19863969090648883200,

%U 3502679882984419737600,-673592285189311488000000,140299650258002307072000000,-31464534897861317399347200000

%N a(n) = (2*n)! * [x^(2*n)] (-x/(1 - x))^n/((1 - x)*n!).

%H G. C. Greubel, <a href="/A295383/b295383.txt">Table of n, a(n) for n = 0..300</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LaguerrePolynomial.html">Laguerre Polynomial</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Laguerre_polynomials">Laguerre polynomials</a>

%H <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a>

%F E.g.f.: 2*K(-16*x)/Pi, where K() is the complete elliptic integral of the first kind.

%F a(n) ~ (-1)^n * 16^n * (n-1)! / Pi. - _Vaclav Kotesovec_, Nov 21 2017

%F From _Peter Luschny_, Nov 21 2017: (Start)

%F a(n) = (-16)^n*Gamma(n+1/2)^2/(Pi*Gamma(n+1)).

%F a(n) = (-16)^n*binomial(n-1/2,-1/2)*Gamma(n+1/2)/sqrt(Pi).

%F a(n) ~ (-exp(-1)*n*16)^n/sqrt(n*Pi/2). (End)

%F a(n) = (-1)^n*binomial(2*n,n)^2*n!. - _Alois P. Heinz_, Oct 02 2021

%p a := n -> (-16)^n*GAMMA(n+1/2)^2/(Pi*GAMMA(n+1)):

%p seq(a(n), n=0..15); # _Peter Luschny_, Nov 21 2017

%t Table[(2 n)! SeriesCoefficient[(-x/(1 - x))^n /((1 - x) n!), {x, 0, 2 n}], {n, 0, 15}]

%t nmax = 15; CoefficientList[Series[2 EllipticK[-16 x]/Pi, {x, 0, nmax}], x] Range[0, nmax]!

%t Table[(-16)^n*Gamma[n + 1/2]^2/(Pi*Gamma[n + 1]), {n,0,50}] (* _G. C. Greubel_, Feb 06 2018 *)

%o (PARI) for(n=0,30, print1(round((-16)^n*gamma(n+1/2)^2/(Pi*gamma(n+1))), ", ")) \\ _G. C. Greubel_, Feb 06 2018

%o (Magma) R:= RealField(); [Round((-16)^n*Gamma(n+1/2)^2/(Pi(R)*Gamma(n+1) )): n in [0..30]]; // _G. C. Greubel_, Feb 06 2018

%Y Central terms of triangles A021009 and A021010.

%Y Cf. A144084.

%K sign

%O 0,2

%A _Ilya Gutkovskiy_, Nov 21 2017