Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Aug 14 2023 15:53:29
%S 1,0,1,2,9,24,175,720,6405,42560,436401,3628800,48073795,479001600,
%T 7116730335,88966701824,1474541093025,20922789888000,400160588853025,
%U 6402373705728000,133991603578884051,2457732174030848000,55735573291977790575,1124000727777607680000
%N Number of permutations of [n] without fixed points and all cycles equal length.
%H Alois P. Heinz, <a href="/A343576/b343576.txt">Table of n, a(n) for n = 0..450</a>
%F a(n) = Sum_{d|n, d<n} (n!/d!)*(d/n)^d for n>0, a(0) = 1.
%F a(n) = A261431(n) for n in { A000040, A001358 }.
%e a(4) = 9: (1,2)(3,4), (1,3)(2,4), (1,4)(2,3), (2,3,4,1), (2,4,1,3), (3,1,4,2), (3,4,2,1), (4,1,2,3), (4,3,1,2).
%p a:= n-> `if`(n=0, 1, add(n!/d!*(d/n)^d, d=numtheory[divisors](n) minus {n})):
%p seq(a(n), n=0..23); # _Alois P. Heinz_, Apr 20 2021
%o (PARI) a(n) = if (n, sumdiv(n, d, if (d<n, (n!/d!)*(d/n)^d)), 1); \\ _Michel Marcus_, Apr 21 2021
%Y Cf. A000040, A001358, A005225, A261431.
%K nonn,easy
%O 0,4
%A _Gary Yane_, Apr 20 2021