login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232845
a(0) = 0, a(1) = 1, and for n>=2, a(n) = (n-2)*a(n-1) - (n-1)*a(n-2).
2
0, 1, 0, -2, -4, -4, 4, 44, 236, 1300, 8276, 61484, 523804, 5024036, 53478980, 624890236, 7946278604, 109195935284, 1612048228276, 25439293045580, 427278358483196, 7609502950269124, 143217213477235364, 2840152418116021916, 59189357288576068780
OFFSET
0,4
LINKS
FORMULA
a(n) ~ (n-3)!. - Vaclav Kotesovec, Jan 20 2014
E.g.f.: (1-x)^2*exp(x-1)*(Ei(1)-Ei(1-x))/2 -(1-x)^2*exp(x) - x/2 + 1. - Robert Israel, Jan 08 2018
a(n) = (-1)^(n+1)*C(n-1, 1) where C(n, x) are the Charlier polynomials (with parameter a=1) as given in A137338. (Evaluation at x = -1 gives the left factorials A003422.) - Peter Luschny, Nov 28 2018
EXAMPLE
a(8) = 6*44 - 7*4 = 236.
MAPLE
f:= gfun:-rectoproc({a(n)=(n-2)*a(n-1)-(n-1)*a(n-2), a(0)=0, a(1)=1}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Jan 08 2018
# Alternative:
C := proc(n, x) option remember; if n > 0 then (x-n)*C(n-1, x)-n*C(n-2, x)
elif n = 0 then 1 else 0 fi end: A232845 := n -> (-1)^(n+1)*C(n-1, 1):
seq(A232845(n), n=0..24); # Peter Luschny, Nov 28 2018
MATHEMATICA
Flatten[{0, RecurrenceTable[{(-1+n) a[-2+n]+(2-n) a[-1+n]+a[n]==0, a[1]==1, a[2]==0}, a, {n, 20}]}] (* Vaclav Kotesovec, Jan 20 2014 *)
nxt[{n_, a_, b_}]:={n+1, b, b(n-1)-a*n}; NestList[nxt, {1, 0, 1}, 30][[;; , 2]] (* Harvey P. Dale, Jun 10 2024 *)
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Philippe Deléham, Nov 30 2013
STATUS
approved