OFFSET
0,4
LINKS
Robert Israel, Table of n, a(n) for n = 0..452
FORMULA
a(n) ~ (n-3)!. - Vaclav Kotesovec, Jan 20 2014
E.g.f.: (1-x)^2*exp(x-1)*(Ei(1)-Ei(1-x))/2 -(1-x)^2*exp(x) - x/2 + 1. - Robert Israel, Jan 08 2018
a(n) = (-1)^(n+1)*C(n-1, 1) where C(n, x) are the Charlier polynomials (with parameter a=1) as given in A137338. (Evaluation at x = -1 gives the left factorials A003422.) - Peter Luschny, Nov 28 2018
EXAMPLE
a(8) = 6*44 - 7*4 = 236.
MAPLE
f:= gfun:-rectoproc({a(n)=(n-2)*a(n-1)-(n-1)*a(n-2), a(0)=0, a(1)=1}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Jan 08 2018
# Alternative:
C := proc(n, x) option remember; if n > 0 then (x-n)*C(n-1, x)-n*C(n-2, x)
elif n = 0 then 1 else 0 fi end: A232845 := n -> (-1)^(n+1)*C(n-1, 1):
seq(A232845(n), n=0..24); # Peter Luschny, Nov 28 2018
MATHEMATICA
Flatten[{0, RecurrenceTable[{(-1+n) a[-2+n]+(2-n) a[-1+n]+a[n]==0, a[1]==1, a[2]==0}, a, {n, 20}]}] (* Vaclav Kotesovec, Jan 20 2014 *)
nxt[{n_, a_, b_}]:={n+1, b, b(n-1)-a*n}; NestList[nxt, {1, 0, 1}, 30][[;; , 2]] (* Harvey P. Dale, Jun 10 2024 *)
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Philippe Deléham, Nov 30 2013
STATUS
approved