login
A137338
Triangle read by rows: T(n,k), 0 <= k <= n, gives the coefficients of the Charlier polynomials (with parameter a=1), ordered by rising powers.
3
1, -1, 1, 0, -3, 1, 3, 6, -6, 1, -12, -9, 26, -10, 1, 45, 3, -109, 71, -15, 1, -198, 81, 501, -475, 155, -21, 1, 1071, -786, -2663, 3329, -1455, 295, -28, 1, -6984, 6711, 16510, -25495, 13729, -3647, 511, -36, 1, 53217, -60309, -117912, 216004, -135961, 43897, -7994, 826, -45, 1, -462330, 589197, 953711
OFFSET
1,5
COMMENTS
Row sums are 1, 0, -2, 4, -4, -4, 44, -236, 1300, -8276, 61484, etc.
Matrix inverse is A216916. - Peter Luschny, Sep 21 2012
LINKS
Carl V. L. Charlier, Über die Darstellung willkürlicher Funktionen, Arkiv För Matematik, Astronomi Och Fysik, Band 2, No. 20 (Meddelande från Lunds Astronomiska Observatorium, Series I, No. 27), 1905, 1-35. [Accessible only in the USA via the HathiTrust Digital Library.]
M. Dunster, Uniform asymptotic expansions for Charlier polynomials, J. Approx. Theory, 112 (2001), pp. 93-133.
Wikipedia, Carl Charlier.
FORMULA
Charlier polynomials: C_{n}(a; x) = Sum_{k=0..n} binomial(n,k)*binomial(x,k)*k!*(-a)^(n-k).
EXAMPLE
[0] 1,
[1] -1, 1,
[2] 0, -3, 1,
[3] 3, 6, -6, 1,
[4] -12, -9, 26, -10, 1,
[5] 45, 3, -109, 71, -15, 1,
[6] -198, 81, 501, -475, 155, -21, 1,
[7] 1071, -786, -2663, 3329, -1455, 295, -28, 1,
[8] -6984, 6711, 16510, -25495, 13729, -3647, 511, -36, 1,
[9] 53217, -60309, -117912, 216004, -135961, 43897, -7994, 826, -45, 1.
MAPLE
with(PolynomialTools):
C := (n, x) -> if n>0 then expand((x-n)*C(n-1, x)-n*C(n-2, x))
elif n = 0 then 1 else 0 fi:
A137338_row := n -> CoefficientList(C(n, x), x);
for n from 0 to 7 do A137338_row(n) od;
# Peter Luschny, Sep 21 2012
MATHEMATICA
Ca[x, -1] = 0; Ca[x, 0] = 1; Ca[x_, n_] := Ca[x, n] = (x - (n - 1) - 1)*Ca[x, n - 1] - n*Ca[x, n - 2]; Table[ExpandAll[Ca[x, n]], {n, 0, 10}]; a = Table[CoefficientList[Ca[x, n], x], {n, 0, 10}]; Flatten[a]
CROSSREFS
Cf. A216916.
Sequence in context: A033789 A109532 A264584 * A176106 A302867 A058659
KEYWORD
tabl,sign
AUTHOR
Roger L. Bagula, Apr 07 2008
EXTENSIONS
Edited by Peter Luschny, Sep 21 2012
STATUS
approved