login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137338 Triangle read by rows: T(n,k), 0 <= k <= n, gives the coefficients of the Charlier polynomials (with parameter a=1), ordered by rising powers. 3
1, -1, 1, 0, -3, 1, 3, 6, -6, 1, -12, -9, 26, -10, 1, 45, 3, -109, 71, -15, 1, -198, 81, 501, -475, 155, -21, 1, 1071, -786, -2663, 3329, -1455, 295, -28, 1, -6984, 6711, 16510, -25495, 13729, -3647, 511, -36, 1, 53217, -60309, -117912, 216004, -135961, 43897, -7994, 826, -45, 1, -462330, 589197, 953711 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Row sums are 1, 0, -2, 4, -4, -4, 44, -236, 1300, -8276, 61484, etc.

Matrix inverse is A216916. - Peter Luschny, Sep 21 2012

LINKS

Table of n, a(n) for n=1..58.

Carl V. L. Charlier, Über die Darstellung willkürlicher Funktionen, Arkiv För Matematik, Astronomi Och Fysik, Band 2, No. 20 (Meddelande från Lunds Astronomiska Observatorium, Series I, No. 27), 1905, 1-35. [Accessible only in the USA via the HathiTrust Digital Library.]

M. Dunster, Uniform asymptotic expansions for Charlier polynomials, J. Approx. Theory, 112 (2001), pp. 93-133.

Chun-Hua Ou, Global Asymptotics of the Charlier Polynomials via the Riemann-Hilbert Method.

Wikipedia, Carl Charlier.

Wikipedia, Charlier polynomials.

FORMULA

Charlier polynomials: C_{n}(a; x) = Sum_{k=0..n} binomial(n,k)*binomial(x,k)*k!*(-a)^(n-k).

EXAMPLE

[0]     1,

[1]    -1,      1,

[2]     0,     -3,       1,

[3]     3,      6,      -6,      1,

[4]   -12,     -9,      26,    -10,       1,

[5]    45,      3,    -109,     71,     -15,     1,

[6]  -198,     81,     501,   -475,     155,   -21,     1,

[7]  1071,   -786,   -2663,   3329,   -1455,   295,   -28,   1,

[8] -6984,   6711,   16510, -25495,   13729, -3647,   511, -36,   1,

[9] 53217, -60309, -117912, 216004, -135961, 43897, -7994, 826, -45, 1.

MAPLE

with(PolynomialTools):

C := (n, x) -> if n>0 then expand((x-n)*C(n-1, x)-n*C(n-2, x))

elif n = 0 then 1 else 0 fi:

A137338_row := n -> CoefficientList(C(n, x), x);

for n from 0 to 7 do A137338_row(n) od;

# Peter Luschny, Sep 21 2012

MATHEMATICA

Ca[x, -1] = 0; Ca[x, 0] = 1; Ca[x_, n_] := Ca[x, n] = (x - (n - 1) - 1)*Ca[x, n - 1] - n*Ca[x, n - 2]; Table[ExpandAll[Ca[x, n]], {n, 0, 10}]; a = Table[CoefficientList[Ca[x, n], x], {n, 0, 10}]; Flatten[a]

CROSSREFS

Cf. A216916.

Sequence in context: A033789 A109532 A264584 * A176106 A302867 A058659

Adjacent sequences:  A137335 A137336 A137337 * A137339 A137340 A137341

KEYWORD

tabl,sign

AUTHOR

Roger L. Bagula, Apr 07 2008

EXTENSIONS

Edited by Peter Luschny, Sep 21 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 24 01:41 EDT 2021. Contains 346269 sequences. (Running on oeis4.)