login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137335
Triangular array read by rows, from polynomial recursion for every other term of Chebyshev orthogonal polynomials of the second kind: U(x,n)=Sin((n+1)*ArcSin(x))/Sin(ArcSin(x)) As q(x,n)=-2*(-1+2*x^2)*q(x,n-1)-q(x,n-1).
0
1, 3, 0, -4, 5, 0, -20, 0, 16, 7, 0, -56, 0, 112, 0, -64, 9, 0, -120, 0, 432, 0, -576, 0, 256, 11, 0, -220, 0, 1232, 0, -2816, 0, 2816, 0, -1024, 13, 0, -364, 0, 2912, 0, -9984, 0, 16640, 0, -13312, 0, 4096, 15, 0, -560, 0, 6048, 0, -28800, 0, 70400, 0, -92160, 0, 61440, 0, -16384, 17, 0, -816, 0, 11424, 0, -71808, 0
OFFSET
1,2
COMMENTS
Alternative code:
Table[Normal[Series[Sin[(n + 1)*ArcSin[x]]/Sin[ArcSin[x]], {x, 0, 30}]], {n, 0, 10, 2}]
Equivalent to Sin[(2*n+1)*ArcSin[x]] recursion divided by x:
(* odd term Sin[n*ArcSin[x] *)
Clear[p]
p[x, 0] = x; p[x, 1] = 3*x - 4*x^3;
p[x_, n_] := p[x, n] = -2*(-1 + 2*x^2)*p[x, n - 1] - p[x, n - 2];
Table[ExpandAll[p[x, n]], {n, 0, 10}]
This odd term form integrates as orthogonal where this Rosenblum and Rovnyak alternating form doesn't.
Table[Integrate[q[x, n]*q[x, m]/Sqrt[1 - x^2], {x, -1, 1}], {n, 0, 10}, {m, 0, 10}]
Row sums are:
{1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1}
REFERENCES
Rosenblum and Rovnyak, Hardy Classes and Operator Theory,Dover, New York,1985, page 18-19
FORMULA
q(x, 0) = 1; q(x, 1) = 3 - 4*x^2; q(x,n)=-2*(-1+2*x^2)*q(x,n-1)-q(x,n-1) ( starting terms are important here: q(x, 0) = x; q(x, 1) = 3x - 4*x^3; gives a 'better' sequence)
EXAMPLE
{1},
{3, 0, -4},
{5, 0, -20, 0, 16},
{7, 0, -56,0, 112, 0, -64},
{9, 0, -120, 0, 432, 0, -576, 0, 256},
{11, 0, -220,0, 1232, 0, -2816, 0, 2816, 0, -1024},
{13, 0, -364, 0, 2912,0, -9984, 0, 16640, 0, -13312, 0, 4096},
{15,0, -560, 0, 6048, 0, -28800, 0, 70400, 0, -92160, 0, 61440, 0, -16384},
{17, 0, -816, 0, 11424, 0, -71808, 0, 239360, 0, -452608, 0, 487424, 0, -278528, 0, 65536},
{19, 0, -1140, 0,20064, 0, -160512, 0, 695552, 0, -1770496, 0, 2723840, 0, -2490368, 0, 1245184, 0, -262144},
{21, 0, -1540, 0, 33264, 0, -329472,0, 1793792, 0, -5870592, 0, 12042240, 0, -15597568, 0, 12386304, 0, -5505024, 0, 1048576}
MATHEMATICA
Clear[q] q[x, 0] = 1; q[x, 1] = 3 - 4*x^2; q[x_, n_] := q[x, n] = -2*(-1 + 2*x^2)*q[x, n - 1] - q[x, n - 2]; Table[ExpandAll[q[x, n]], {n, 0, 10}]; a = Table[CoefficientList[q[x, n], x], {n, 0, 10}] Flatten[a]
CROSSREFS
Sequence in context: A354783 A209132 A019789 * A011077 A322936 A307383
KEYWORD
uned,tabf,sign
AUTHOR
Roger L. Bagula, Apr 07 2008
STATUS
approved