login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array read by rows, from polynomial recursion for every other term of Chebyshev orthogonal polynomials of the second kind: U(x,n)=Sin((n+1)*ArcSin(x))/Sin(ArcSin(x)) As q(x,n)=-2*(-1+2*x^2)*q(x,n-1)-q(x,n-1).
0

%I #3 Mar 30 2012 17:34:26

%S 1,3,0,-4,5,0,-20,0,16,7,0,-56,0,112,0,-64,9,0,-120,0,432,0,-576,0,

%T 256,11,0,-220,0,1232,0,-2816,0,2816,0,-1024,13,0,-364,0,2912,0,-9984,

%U 0,16640,0,-13312,0,4096,15,0,-560,0,6048,0,-28800,0,70400,0,-92160,0,61440,0,-16384,17,0,-816,0,11424,0,-71808,0

%N Triangular array read by rows, from polynomial recursion for every other term of Chebyshev orthogonal polynomials of the second kind: U(x,n)=Sin((n+1)*ArcSin(x))/Sin(ArcSin(x)) As q(x,n)=-2*(-1+2*x^2)*q(x,n-1)-q(x,n-1).

%C Alternative code:

%C Table[Normal[Series[Sin[(n + 1)*ArcSin[x]]/Sin[ArcSin[x]], {x, 0, 30}]], {n, 0, 10, 2}]

%C Equivalent to Sin[(2*n+1)*ArcSin[x]] recursion divided by x:

%C (* odd term Sin[n*ArcSin[x] *)

%C Clear[p]

%C p[x, 0] = x; p[x, 1] = 3*x - 4*x^3;

%C p[x_, n_] := p[x, n] = -2*(-1 + 2*x^2)*p[x, n - 1] - p[x, n - 2];

%C Table[ExpandAll[p[x, n]], {n, 0, 10}]

%C This odd term form integrates as orthogonal where this Rosenblum and Rovnyak alternating form doesn't.

%C Table[Integrate[q[x, n]*q[x, m]/Sqrt[1 - x^2], {x, -1, 1}], {n, 0, 10}, {m, 0, 10}]

%C Row sums are:

%C {1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1}

%D Rosenblum and Rovnyak, Hardy Classes and Operator Theory,Dover, New York,1985, page 18-19

%F q(x, 0) = 1; q(x, 1) = 3 - 4*x^2; q(x,n)=-2*(-1+2*x^2)*q(x,n-1)-q(x,n-1) ( starting terms are important here: q(x, 0) = x; q(x, 1) = 3x - 4*x^3; gives a 'better' sequence)

%e {1},

%e {3, 0, -4},

%e {5, 0, -20, 0, 16},

%e {7, 0, -56,0, 112, 0, -64},

%e {9, 0, -120, 0, 432, 0, -576, 0, 256},

%e {11, 0, -220,0, 1232, 0, -2816, 0, 2816, 0, -1024},

%e {13, 0, -364, 0, 2912,0, -9984, 0, 16640, 0, -13312, 0, 4096},

%e {15,0, -560, 0, 6048, 0, -28800, 0, 70400, 0, -92160, 0, 61440, 0, -16384},

%e {17, 0, -816, 0, 11424, 0, -71808, 0, 239360, 0, -452608, 0, 487424, 0, -278528, 0, 65536},

%e {19, 0, -1140, 0,20064, 0, -160512, 0, 695552, 0, -1770496, 0, 2723840, 0, -2490368, 0, 1245184, 0, -262144},

%e {21, 0, -1540, 0, 33264, 0, -329472,0, 1793792, 0, -5870592, 0, 12042240, 0, -15597568, 0, 12386304, 0, -5505024, 0, 1048576}

%t Clear[q] q[x, 0] = 1; q[x, 1] = 3 - 4*x^2; q[x_, n_] := q[x, n] = -2*(-1 + 2*x^2)*q[x,n - 1] - q[x, n - 2]; Table[ExpandAll[q[x, n]], {n, 0, 10}]; a = Table[CoefficientList[q[x, n], x], {n, 0, 10}] Flatten[a]

%K uned,tabf,sign

%O 1,2

%A _Roger L. Bagula_, Apr 07 2008