login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 0, a(1) = 1, and for n>=2, a(n) = (n-2)*a(n-1) - (n-1)*a(n-2).
2

%I #22 Jun 10 2024 12:29:41

%S 0,1,0,-2,-4,-4,4,44,236,1300,8276,61484,523804,5024036,53478980,

%T 624890236,7946278604,109195935284,1612048228276,25439293045580,

%U 427278358483196,7609502950269124,143217213477235364,2840152418116021916,59189357288576068780

%N a(0) = 0, a(1) = 1, and for n>=2, a(n) = (n-2)*a(n-1) - (n-1)*a(n-2).

%H Robert Israel, <a href="/A232845/b232845.txt">Table of n, a(n) for n = 0..452</a>

%F a(n) ~ (n-3)!. - _Vaclav Kotesovec_, Jan 20 2014

%F E.g.f.: (1-x)^2*exp(x-1)*(Ei(1)-Ei(1-x))/2 -(1-x)^2*exp(x) - x/2 + 1. - _Robert Israel_, Jan 08 2018

%F a(n) = (-1)^(n+1)*C(n-1, 1) where C(n, x) are the Charlier polynomials (with parameter a=1) as given in A137338. (Evaluation at x = -1 gives the left factorials A003422.) - _Peter Luschny_, Nov 28 2018

%e a(8) = 6*44 - 7*4 = 236.

%p f:= gfun:-rectoproc({a(n)=(n-2)*a(n-1)-(n-1)*a(n-2),a(0)=0,a(1)=1},a(n), remember):

%p map(f, [$0..30]); # _Robert Israel_, Jan 08 2018

%p # Alternative:

%p C := proc(n, x) option remember; if n > 0 then (x-n)*C(n-1, x)-n*C(n-2, x)

%p elif n = 0 then 1 else 0 fi end: A232845 := n -> (-1)^(n+1)*C(n-1, 1):

%p seq(A232845(n), n=0..24); # _Peter Luschny_, Nov 28 2018

%t Flatten[{0,RecurrenceTable[{(-1+n) a[-2+n]+(2-n) a[-1+n]+a[n]==0, a[1]==1,a[2]==0}, a, {n, 20}]}] (* _Vaclav Kotesovec_, Jan 20 2014 *)

%t nxt[{n_,a_,b_}]:={n+1,b,b(n-1)-a*n}; NestList[nxt,{1,0,1},30][[;;,2]] (* _Harvey P. Dale_, Jun 10 2024 *)

%Y Cf. A153229, A137338, A003422.

%K sign,easy

%O 0,4

%A _Philippe Deléham_, Nov 30 2013