The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A232848 Prime(k), where k divides Sum_{i=1..k} prime(i)^15. 0
 2, 59, 97, 127, 12517, 54581, 83921, 89273, 1396411, 2562719, 4952183, 29201281, 35562101, 47567557, 111213143, 184201627, 1172476337, 7309217299, 287609314877, 5173838081669, 408907258717171, 1357729730868191 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(22) > 424437574370977. a(23) > 2336229183824581 - Bruce Garner, Jan 07 2022 LINKS FORMULA a(n) = prime(A131275(n)). EXAMPLE a(2) = 59, because 59 is the 17th prime and the sum of the first 17 primes^15 = 455708280934100194626604550 when divided by 17 equals 26806369466711776154506150 which is an integer. MATHEMATICA t = {}; sm = 0; Do[sm = sm + Prime[n]^15; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *) PROG (PARI) is(n)=if(!isprime(n), return(0)); my(t=primepi(n), s); forprime(p=2, n, s+=Mod(p, t)^15); s==0 \\ Charles R Greathouse IV, Nov 30 2013 (PARI) S=n=0; forprime(p=1, , (S+=p^15)%n++||print1(p", ")) \\ M. F. Hasler, Dec 01 2013 CROSSREFS Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n), A131275. Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248. Cf. A024450, A111441, A217599, A128166, A233862, A217600, A217601. Sequence in context: A195325 A195329 A197185 * A215393 A141869 A329551 Adjacent sequences:  A232845 A232846 A232847 * A232849 A232850 A232851 KEYWORD nonn,more AUTHOR Robert Price, Dec 09 2013 EXTENSIONS a(20) from Karl-Heinz Hofmann, Feb 17 2021 a(21) from Bruce Garner, Apr 30 2021 a(22) from Bruce Garner, Jan 07 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 01:35 EDT 2022. Contains 354092 sequences. (Running on oeis4.)