login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232848
Prime(k), where k divides Sum_{i=1..k} prime(i)^15.
0
2, 59, 97, 127, 12517, 54581, 83921, 89273, 1396411, 2562719, 4952183, 29201281, 35562101, 47567557, 111213143, 184201627, 1172476337, 7309217299, 287609314877, 5173838081669, 408907258717171, 1357729730868191, 66413899001789557
OFFSET
1,1
FORMULA
a(n) = prime(A131275(n)).
EXAMPLE
a(2) = 59, because 59 is the 17th prime and the sum of the first 17 primes^15 = 455708280934100194626604550 when divided by 17 equals 26806369466711776154506150 which is an integer.
MATHEMATICA
t = {}; sm = 0; Do[sm = sm + Prime[n]^15; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
PROG
(PARI) is(n)=if(!isprime(n), return(0)); my(t=primepi(n), s); forprime(p=2, n, s+=Mod(p, t)^15); s==0 \\ Charles R Greathouse IV, Nov 30 2013
(PARI) S=n=0; forprime(p=1, , (S+=p^15)%n++||print1(p", ")) \\ M. F. Hasler, Dec 01 2013
CROSSREFS
Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n), A131275.
Sequence in context: A195325 A195329 A197185 * A215393 A141869 A329551
KEYWORD
nonn,more
AUTHOR
Robert Price, Dec 09 2013
EXTENSIONS
a(20) from Karl-Heinz Hofmann, Feb 17 2021
a(21) from Bruce Garner, Apr 30 2021
a(22) from Bruce Garner, Jan 07 2022
a(23) from Paul W. Dyson, Apr 18 2024
STATUS
approved