Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 May 17 2024 07:43:32
%S 1,3,5,7,11,13,15,17,19,21,23,27,29,31,33,35,37,39,41,43,47,51,53,55,
%T 57,59,61,65,67,69,71,73,77,79,83,85,87,89,91,93,95,97,101,103,105,
%U 107,109,111,113,115,119,123,125,127,129,131,133,135,137,139,141,143,145,149
%N List of positive integers whose prime tower factorization, as defined in comments, does not contain the prime 2.
%C The prime tower factorization of a number can be recursively defined as follows: the prime tower factorization of 1 is itself; to find the prime tower factorization of an integer n > 1, let n = p_1^e_1 * p_2^e_2 * ... * p_k^e_k be the canonical prime factorization of n, then the prime tower factorization is given by p_1^f_1 * p_2^f_2 * ... * p_k^f_k, where f_i is the prime tower factorization of e_i.
%C An alternative definition: let I(n) be the indicator function for the set of positive integers whose prime tower factorization does not contain a 2. Then I(n) is the multiplicative function satisfying I(p^k) = I(k) for p prime not equal to 2, and I(2^k) = 0.
%H Rémy Sigrist, <a href="/A182318/b182318.txt">Table of n, a(n) for n = 1..10000</a>
%H Patrick Devlin and Edinah Gnang, <a href="http://arxiv.org/abs/1204.5251">Primes Appearing in Prime Tower Factorization</a>, arXiv:1204.5251 [math.NT], 2012-2014.
%p # The integer n is in this sequence if and only if
%p # containsPrimeInTower(2, n) returns false
%p containsPrimeInTower:=proc(q, n) local i, L, currentExponent; option remember;
%p if n <= 1 then return false: end if;
%p if type(n/q, integer) then return true: end if;
%p L := ifactors(n)[2];
%p for i to nops(L) do currentExponent := L[i][2];
%p if containsPrimeInTower(q, currentExponent) then return true: end if
%p end do;
%p return false:
%p end proc:
%t Select[Range[150], ! MemberQ[Flatten@ FixedPoint[Map[If[PrimeQ@ Last@ # || Last@ # == 1, #, {First@ #, FactorInteger@ Last@ #}] &, #, {Depth@ # - 2}] &, FactorInteger@ #], 2] &] (* _Michael De Vlieger_, Feb 17 2017 *)
%t containsPrimeInTower[q_, n_] := containsPrimeInTower[q, n] = Module[{i, L, currentExponent}, If[n <= 1, Return[False]]; If[IntegerQ[n/q], Return[True] ]; L = FactorInteger[n]; For[i = 1, i <= Length[L], i++, currentExponent = L[[i, 2]]; If[containsPrimeInTower[q, currentExponent], Return[True]]]; Return[False]];
%t Select[Range[150], !containsPrimeInTower[2, #]&] (* _Jean-François Alcover_, Jan 22 2019, translated from Maple *)
%o (PARI) is(n)=if(n<4, return(n!=2)); if(n%2==0, return(0)); my(f=factor(n)[,2]); for(i=1,#f, if(!is(f[i]), return(0))); 1 \\ _Charles R Greathouse IV_, May 16 2024
%Y A276378 is a subsequence.
%K nonn
%O 1,2
%A _Patrick Devlin_, Apr 24 2012
%E Typo in Maple program corrected by _Rémy Sigrist_, Dec 13 2016