

A039508


Conjecturally, number of minimum points of '3x+(2n+1)' problem.


7



1, 1, 6, 2, 1, 3, 10, 6, 3, 2, 2, 4, 8, 1, 5, 2, 3, 9, 4, 10, 2, 2, 6, 8, 3, 3, 2, 11, 2, 8, 3, 2, 16, 2, 4, 8, 4, 8, 5, 5, 1, 4, 9, 5, 2, 14, 2, 10, 3, 3, 8, 3, 9, 2, 2, 4, 2, 11, 10, 9, 5, 2, 12, 3, 2, 4, 5, 6, 6, 2, 8, 15, 13, 3, 3, 3, 3, 8, 2, 2, 9, 3, 11, 4, 12, 2, 3, 18, 8, 2, 4, 3, 10, 7
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

Table of n, a(n) for n=0..93.
D. Wasserman, Listing of loops


EXAMPLE

In '3x+1' problem (n>n/2 if even, n>3n+1 if odd) every n (conjecturally) reaches 1.
In '3x+3' problem, every n (conjecturally) reaches 3.
In '3x+5' problem, every n (conjecturally) reaches 1,5,19,23,187 or 347. (6 values)
In '3x+7' problem, every n (conjecturally) reaches 5 or 7. (2 values)


CROSSREFS

Cf. A039509A039515.
Sequence in context: A165061 A306764 A101607 * A324569 A224518 A265986
Adjacent sequences: A039505 A039506 A039507 * A039509 A039510 A039511


KEYWORD

nonn


AUTHOR

Christian G. Bower, Feb 15 1999


STATUS

approved



