login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162578
Partial sums of A002322.
6
1, 2, 4, 6, 10, 12, 18, 20, 26, 30, 40, 42, 54, 60, 64, 68, 84, 90, 108, 112, 118, 128, 150, 152, 172, 184, 202, 208, 236, 240, 270, 278, 288, 304, 316, 322, 358, 376, 388, 392, 432, 438, 480, 490, 502, 524, 570, 574, 616, 636, 652, 664, 716, 734, 754, 760, 778
OFFSET
1,2
LINKS
Paul Erdős, Carl Pomerance, and Eric Schmutz, Carmichael's lambda function, Acta Arithmetica, Vol. 58, No. 4 (1991), pp. 363-385; alternative link.
FORMULA
a(n) = Sum_{k=1..n} A002322(k).
a(n) = (n^2/log(n)) * exp(B * (log(log(n))/log(log(log(n)))) * (1 + o(1))), where B = A218342 (Erdős et al., 1991). - Amiram Eldar, Dec 27 2022
MAPLE
read("transforms3") ; a002322 := BFILETOLIST("b002322.txt") : A162578 :=proc(n) global a002322 ; local i; add(op(i, a002322), i=1..n) ; end: seq(A162578(n), n=1..120) ; # R. J. Mathar, Jul 16 2009
MATHEMATICA
Accumulate[CarmichaelLambda[Range[60]]] (* Harvey P. Dale, Sep 21 2011 *)
PROG
(PARI) a(n) = sum(i=1, n, lcm(znstar(i)[2])) \\ Felix Fröhlich, Jul 04 2018
CROSSREFS
Sequence in context: A072542 A167856 A293750 * A152919 A306564 A002088
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jul 06 2009
EXTENSIONS
a(13) corrected and more terms added by R. J. Mathar, Jul 16 2009
STATUS
approved