login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A002322.
6

%I #23 Dec 27 2022 02:27:42

%S 1,2,4,6,10,12,18,20,26,30,40,42,54,60,64,68,84,90,108,112,118,128,

%T 150,152,172,184,202,208,236,240,270,278,288,304,316,322,358,376,388,

%U 392,432,438,480,490,502,524,570,574,616,636,652,664,716,734,754,760,778

%N Partial sums of A002322.

%H G. C. Greubel, <a href="/A162578/b162578.txt">Table of n, a(n) for n = 1..10000</a>

%H Paul Erdős, Carl Pomerance, and Eric Schmutz, <a href="https://doi.org/10.4064/aa-58-4-363-385">Carmichael's lambda function</a>, Acta Arithmetica, Vol. 58, No. 4 (1991), pp. 363-385; <a href="https://math.dartmouth.edu/~carlp/PDF/lambda.pdf">alternative link</a>.

%F a(n) = Sum_{k=1..n} A002322(k).

%F a(n) = (n^2/log(n)) * exp(B * (log(log(n))/log(log(log(n)))) * (1 + o(1))), where B = A218342 (Erdős et al., 1991). - _Amiram Eldar_, Dec 27 2022

%p read("transforms3") ; a002322 := BFILETOLIST("b002322.txt") : A162578 :=proc(n) global a002322 ; local i; add(op(i,a002322),i=1..n) ; end: seq(A162578(n),n=1..120) ; # _R. J. Mathar_, Jul 16 2009

%t Accumulate[CarmichaelLambda[Range[60]]] (* _Harvey P. Dale_, Sep 21 2011 *)

%o (PARI) a(n) = sum(i=1, n, lcm(znstar(i)[2])) \\ _Felix Fröhlich_, Jul 04 2018

%Y Cf. A002322, A218342.

%K easy,nonn

%O 1,2

%A _Jonathan Vos Post_, Jul 06 2009

%E a(13) corrected and more terms added by _R. J. Mathar_, Jul 16 2009